17210

16172 2 Hours / 50 Marks

Seat No.

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

			Marks
1.	Atte	empt any NINE of the following :	18
	(a)	State Ohm's law. Give meaning of the symbols used.	
	(b)	State the principle of potentiometer device.	

- (c) Draw a neat diagram of Wheatstone's Network.
- (d) Write the factors on which capacity of parallel plate capacitor depends.
- (e) Define One Farad.
- (f) Draw a neat labelled diagram showing capacitors connected in parallel combination.
- (g) Draw the energy band diagram for conductors and semiconductors.
- (h) State the principle of photodiode and draw its symbol.
- (i) Draw the circuit diagram of reverse biased PN junction diode.
- (j) An accelerated electron emits a quantum of radiation with frequency 8×10^8 Hz. Calculate the energy of electron. Given : $h = 6.62 \times 10^{-34}$ Js.
- (k) Give the full form of LASER.
- (1) Name one zero dimensional and one dimensional nano material.

2. Attempt any FOUR of the following :

- (a) The specific resistance of the material of a wire is $2.81 \times 10^{-7} \Omega m$. If the resistance of the wire is 2.1 Ω and its radius is 0.8 mm, calculate the length of the wire.
- (b) (i) State the principle of the potentiometer.
 - (ii) Define potential gradient :
- (c) Find the area of parallel-plate condenser if its capacitance is 3 μ F, distance between the two plates is 0.04 mm, dielectric constant is 6 and $\epsilon_0 = 8.9 \times 10^{-12}$ SI unit.
- (d) Explain forward biased PN junction diode. Draw its I-V characteristics.
- (e) Differentiate N-type and P-type semiconductor.
- (f) State four applications of LDR.

3. Attempt any FOUR of the following :

- (a) Draw a neat labelled diagram of photocell and state two properties of photons.
- (b) Explain the production of X-ray's using Coolidge tube.
- (c) State four applications of X-ray's.
- (d) Calculate the minimum wavelength and maximum frequency of X-ray's produced by an X-ray tube working at 40 kV.

Given : $h = 6.62 \times 10^{-34} \text{ Js}$

 $c=3\times 10^8 \text{ m/s}$

 $e^- = 1.6 \times 10^{-19} \, C$

- (e) State the engineering applications of LASER.
- (f) State four applications of nano material in engineering field.

16