15162

3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions: (1) **All** questions are **compulsory**.

- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if **necessary**.

Marks

1. A) Attempt any three:

12

- a) Define chain and non chain reaction.
- b) Derive the relationship between conversion and equilibrium constant for second order reversible reaction.
- c) The rate of reaction at concentrations 0.15 mol/l and 0.05 mol/l are 2.7×10^{-3} and 0.3×10^{-3} mol/l min. What is the order of reaction with respect to the reactant?
- d) Give the relation between C_A and X_A for:
 - i) constant density system
 - ii) changing density system.

B) Attempt any one:

6

- a) Derive the integrate form of rate expression for zero order reaction in terms of concentration and conversion. Give the graphical representation.
- b) List theories of reaction rate constant and compare between them on the basis of
 - i) Experiment
 - ii) Mathematical equation
 - iii) Activated complex.

2. Attempt any two:

16

- a) Explain temperature dependency of rate constant from collusion theory.
- b) In an isothermal batch reactor, the conversion of a liquid reactant A achieved in 13 min is 70%. Find the space time and space velocity necessary to effect this conversion in a plug flow reactor and in a mixed flow reactor consider first order kinetics.
- c) Draw the neat labeled Sketch of fixed bed and fluidised bed reactor and explain in brief.

Marks

3. Attempt any four:

16

a) In an experiment at 1000 K the equilibrium concentration of ammonia, hydrogen and nitrogen are 0.105, 1.5, and 1.10 mol/l respectively. Calculate Kc and Kp for the reaction.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
.

- b) Define half life period and write the relation between half life and rate constant for first order reaction. State its one characteristics.
- c) Define the following terms:
 - i) Fugacity
 - ii) Chemical potential
 - iii) Chemical Equilibrium constant
 - iv) Gibbs free energy.
- d) Explain the types of intermediate involved in non-chain reactions.
- e) State the steps involved in solid catalysed gas phase reactions.

4. A) Attempt **any three**:

12

- a) Derive an integrated rate expression for irreversible second order reaction.
 - $2A \rightarrow \text{products in terms of conversion.}$
- b) Name three catalyst deactivation categories. Describe any one in brief.
- c) The half life for the conversion of ammonium cynate into urea at 303 K at initial concentration of ammonium cynate of 0.1 mol/1 and 0.2 mol/l are 1152 min and 568 min respectively. What is the order of reaction?
- d) Derive $Kp = Kc (RT)^{\Delta n}$.

B) Attempt any one:

6

a) Concentration Vs time data for the reaction is given below

$$A \rightarrow R$$

$$B \rightarrow S$$

Time (hr)	Concentration of A mol/lit	Concentration of R mol/lit		
0	0.100	0.00		
2	0.050	0.050		

Marks

Time (hr)	Concentration of B mol/lit.	Concentration of S mol/lit.		
0	0.100	0.00		
2	0.075	0.025		

Calculate:

- i) Which reaction proceed at greatest rate?
- ii) What are the rates of formation of R and S?
- b) Derive the expression for entropy change of an ideal gas for
 - i) constant pressure process.
 - ii) constant temperature process.

5. Attempt any two:

16

- a) Derive the integrated form of rate expression for constant volume first order reversible reaction
 A B in terms of concentration and conversion. Give the graphical representation also.
- b) Derive the performance equation for constant volume PFR. Give the graphical representation also.
- c) Compare MFR and PFR (4 points).

6. Attempt **any four**:

16

- a) Define space time and space velocity. Give its unit.
- b) Why temperature increase is not desirable for exothermic reaction? (On the basis of Van't Hoff equation).
- c) Give the significance of activation energy.
- d) Explain the differential method of analysis of data.
- e) How feeding should be done when PFR's are connected in parallel?