

5 Ho	urs / 100 M	arks	Seat No.								
	Instructions :	 (2) Answe (3) Illustri (4) Figure (5) Assun (6) Use of permini (7) Mobili device 	estions are com er each next ma rate your answer es to the right in ne suitable data, f Non-programn ssible . e Phone, Pager es are not permi f Steam tables, la	in que s with dicat if ne uable and a ssible	estion in neat e full cessar Electr ny oth in Ex	sketc mark ry. ronic her El	hes wi s. Pocke ectron ation I	herevo t Calc ic Col Hall.	rulato mmur	er is nicatio	on
										Γ	Marks
1. A)	 Attempt any three a) Write down the b) State and explain c) State and explain d) Write down the 	difference b in Fourier's in Stefan-Bo	etween evaporati law. ltzman law.		·	-	on pro	cess.			12
B)	Attempt any one o a) Derive an expre b) Give the constru	ession to find	d out rate of heat			-	-	e.			6
a) b) c) d)	empt any four of the Write down the diff A furnace is constru 225 mm of the build 330 k. Find the hea Data : k for fire bri k for insulat k for buildin Write down the nan Write its construction Give the difference	For ence between sing block. The formula is the second se	25 mm thick of fir The inside temper it area. nk 0.2 w/mk. 7 w/m.k. changer used for ng. gle pan and multi	e bricl ature handli pan sl	k, 120 is 120 ing com	mm o 0 k an rrosive id tube	d the o e and r	utside	temp ctive f	. is	16
e)	Define monochrom	atic emissiv	e power and total	emiss	ive po	wer.					
	empt any two of the Draw a neat labelled	-	plate type heat ex	chang	ger. Gi	ive its	constr	uction	and w	vorkin	16 g.
b)	Derive the relations	hin hetween	individual and ov	erall k	eat tra	nsfer	coeffic	rient			

- c) Find the overall heat transfer coefficient from the following data:
 - i) LMTD = 23 k for counter current flow.
 - ii) Heat transfer area = 1.5 m^2
 - iii) Rate of heat transfer $= 116 \, \text{kW}$
 - iv) Correction factor for LMTD = 0.85.
- 4. A) Attempt any three of the following :
 - a) A 50 mm i.d., iron pipe at 423 k passes through a room in which surroundings are at 300 k. If the emissivity of the pipe metal is 0.8, what is the net interchange of radiation energy per meter length of pipe? The outside diameter of pipe is 60 mm.
 - b) Draw a neat labelled diagram of fixed tube sheet heat exchanger.
 - c) Define capacity and economy of evaporation.
 - d) Estimate the heat loss per m^2 of surface area for a furnace wall, 300 mm thick. The inner and outer surface temperatures are 593 k and 311 k respectively. The variation in thermal conductivity (w/m.k.) with temperature in k is given by the following relation : $k = 0.003T - 10^{-6}T^2$.
 - B) Attempt any one of the following :
 - a) Derive an expression to find out rate of heat transfer through a cylinder.
 - b) Give the advantages and disadvantages of short tube evaporator.
- 5. Attempt **any two** of the following :
 - a) Cold fluid is flowing through the heat exchanger at a rate of $15 \text{ m}^3/\text{hr}$. It enters the heat exchanger at 303 k and leaves at 328 k. A hot thermic fluid enters the heat exchanger at a rate of 21 m³/hr at a temp. of 388 k. Find the exit temperature of hot fluid.

Data : Density of cold fluid = 1000 kg/m^3 Density of thermic fluid = 950 kg/m^3 Specific heat of cold fluid = 4.187 kJ/kgk Specific heat of thermic fluid = 2.93 kJ/kgk.

- b) A hot fluid enters a double pipe heat exchanger at a temperature of 423 k and to be cooled to 363 k by a cold fluid entering at 308 k and heated to 338 k. Shall they be directed in parallel flow or counter-current flow to have a high rate of heat transfer.
- c) A solution containing 10% solids is to be concentrated to a level of 50% solids. Steam is available at a pressure of 0.20 MPa [saturation temperature of 393 k]. Feed rate to the evaporator is 30000 kg/hr. The evaporator is working at reduced pressure such that boiling point is 323 k. The overall heat transfer coefficient is 2.9 kW/m².k. Estimate the steam economy and heat transfer surface for :
 - i) Feed introduced at 293 k.
 - ii) Specific heat of feed = 3.98 kJ/kgk.
 - iii) Latent heat of condensation of steam at 0.20 MPa = 220 kJ/kg.
 - iv) Latent heat of vaporisation of water at 323 k = 2383 kJ/kg.
- 6. Attempt any two of the following :
 - a) What is multiple effect evaporation system? Describe any two methods of feeding a multiple effect evaporation system.
 - b) Describe the dropwise and filmwise condensation process.
 - c) Derive the equation of LMTD.

17560

Marks

12

6

16

16