15162

3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not permissible** in Examination Hall.

Marks

1. Attempt any ten of the following:

 $(10 \times 2 = 20)$

- a) Find the point on the curve $y = 3x x^2$ if the slope is -5.
- b) Find the radius of curvature of the curve $y = x^3$ at (2, 8).
- c) Evaluate $\int x(x-1)^2 dx$.
- d) Evaluate $\int e^{\sin x} \cdot \cos x \, dx$.
- e) Evaluate $\int x \sin x \, dx$.
- f) Evaluate $\int \frac{1}{(x+1)(x+2)} dx$.
- g) Evaluate $\int_2^3 \frac{dx}{x+1}$.
- h) Find the area under the curve $y = x^2$ from x = 0 to x = 3 with x-axis.
- i) Find order and degree of $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3$.
- j) Form the differential equation of $y = ax^2$.
- $k) \ \ An \ unbiased \ coin \ is \ tossed \ 6 \ times. \ Find \ the \ probability \ of \ getting \ 2 \ heads.$
- l) An urn contain 8 blue, 7 green and 5 red balls. A ball is taken at random from an urn. What is the probability that the ball is (i) red (ii) blue.

Marks

2. Attemptany four of the following:

 $(4 \times 4 = 16)$

- a) Find the equation of the tangent and normal to the curve $y = x^2$ at (-1, 1).
- b) A beam is bent in the form of the curve $y = 2 \sin x \sin 2x$. Find the radius of curvature of the beam at $x = \frac{\Pi}{2}$.
- c) Find maximum and minimum values of $x^3 12x 5$.
- d) Evaluate $\int \frac{1}{1 + \cos 2x} dx$.
- e) Evaluate $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.
- f) Evaluate $\int \frac{dx}{x^2 + 4x + 5}$.

3. Attempt any four of the following:

 $(4 \times 4 = 16)$

- a) Evaluate $\int_0^1 x e^x dx$.
- b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan x} dx$.
- c) Find area bounded by two curves y = x and $y = x^2$.
- d) Solve $\frac{dy}{dx} = (4x + y + 1)^2$.
- e) Solve $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$.
- f) Solve $x \frac{dy}{dx} + y = x^3$.

Marks

4. Attempt any four of the following:

 $(4 \times 4 = 16)$

a) Evaluate
$$\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{x} + \sqrt{5-x}} dx$$
.

b) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$
.

c) Find the area of the circle $x^2 + y^2 = 36$ by integration.

d) Solve
$$\frac{dy}{dx} = e^{x} \cdot e^{-y} + xe^{-y}$$
.

e) Solve
$$(x^2 + 6xy - y^2) dx + (3x^2 - 2xy + y^2) dy = 0$$
.

f) Verify that
$$y = \sin(\log x)$$
 is a solution of differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.

5. Attempt any four of the following:

 $(4 \times 4 = 16)$

- a) If two dice are rolled. Find the probability that the sum is equal to 9.
- b) An unbiased coin is tossed 5 times. Find the probability of getting:
 - i) three heads

- ii) atleast 4 heads
- c) Fit a Poisson distribution.

X	0	1	2	3	4
f	122	60	15	2	1

d) Evaluate
$$\int \frac{dx}{5 + 4\cos x}$$
.

e) Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \tan x}.$$

f) Solve
$$\frac{dy}{dx} = \cos(x + y)$$
.

Marks

6. Attemptany four of the following:

 $(4 \times 4 = 16)$

a) If
$$P(A) = \frac{2}{3}$$
, $P(B') = \frac{3}{4}$ and $P(\frac{A}{B}) = \frac{4}{5}$.

Find: i) $P(A \cap B)$

ii)
$$P(B_A)$$
.

b) The probability of getting an item defective is 0.005. What is the probability that exactly 3 items in a sample of 200 are defective?

(Given: $e^{-1} = 0.3679$)

- c) I.Q.s are normally distributed with mean 100 and S.D. 15.
 Find the probability that a randomly selected person has (i) I.Q. more than 130 (ii) I.Q. between 85 and 115.
- d) Divide 80 into two parts such that their product is maximum.
- e) Find the equations of tangents to the curve $y = x^2 2x 3$ where it meets the x-axis.
- f) Find the area enclosed by the parabolas $y^2 = x$ and $x^2 = y$.