17102

15162

2 Hours / 50 Marks

Seat No.				
Seat No.				

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if necessary.

Marks

18

1. Attempt any nine of the following:

- a) State Hooke's law of elasticity.
- b) Define compressibility. State its SI Unit.
- c) Define velocity gradient and state its unit.
- d) A water tank having capacity to store 1000 cm³ of water is filled one-third. Calculate pressure at the bottom of water tank.

Given: Density of water = 10^3 kg/m³, g = 10 m/s²)

- e) Define:
 - i) Adhesive force

- ii) Cohesive force
- f) What is absolute scale of temperature?
- g) Explain why C_p is greater than C_v .
- h) Define the two specific heats of gas.
- i) Define transverse wave. Give one example.
- j) The wave travels with speed of 3×10^8 m/s and frequency 90 MHz. Calculate its wavelength.
- k) State the principles of superposition of waves.
- 1) Define resonance.

2. Attempt any four of the following:

16

- a) Explain stress-strain diagram for a wire under continuously increasing load.
- b) Calculate Young's modulus of elasticity for material of wire having length 2 m, 0.6 mm diameter. If weight applied is 100 N which elongates the wire by 1 mm.
- c) State Newton's law of viscosity. Define coefficient of viscosity and state its SI unit.
- d) Define:
 - i) Streamline flow

ii) Turbulent flow

Give significance of Reynold's number.

- e) Explain Laplace's molecular theory of surface tension of liquid.
- f) A capillary tube of radius 0. 1 mm is dipped into a liquid of density 10³ kg/m³ and angle of contact 10°. If the liquid rises by 20 mm in the tube. Find the surface tension of liquid.

Marks

3. Attempt any four of the following:

16

- a) State law of thermal conductivity. Define coefficient of thermal conductivity.
- b) Define isothermal process and adiabatic process. Give one example of each in engineering field.
- c) State the use of bad conductor in heat transfer.
- d) Derive an equation for prism formula using neat labelled diagram.
- e) Explain the propagation of light wave through optical fibre with help of neat labelled diagram.
- f) i) A particle performing SHM has period of 3 sec. Calculate its acceleration at 2 cm from mean position.
 - ii) A tuning fork of frequency 512 Hz resonates with an air column of length 14 cm. Calculate the velocity of sound in air, if end correction is 26 mm.