17665

21415

					_	 			
3	Hours /	100	Marks	Seat No.					

- Instructions (1) All Questions are Compulsory.
 - (2) Illustrate your answers with neat sketches wherever necessary.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary.
 - (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

20

- a) Define process automation. State its benifits.
- b) Compare any two internationally recognized process automation system in detail. (four points)
- c) Compare proprietary and open network. (any four points)
- d) Describe, how interfacing of final control element and DCS is achieved?
- e) With suitable example, explain importance of graphic displays in process automation.
- f) For ethernet network compare bus topology with star topology (any four points)
- g) Explain the role of SCADA in automation.

17665 [2]

2.		Attempt any <u>TWO</u> of the following:	16
	a)	(i) Explain in brief ERP.	
		(ii) Explain the concept of intelligent motor control.	
	b)	State use of following in plans.	
		(i) MES	
		(ii) Historian	
	c)	What do you mean by continuous process plant? Develop and explain the architecture refinery plant in detail.	
3.		Attempt any <u>TWO</u> of the following:	16
	a)	Explain following in detail.	
		(i) Control net	
		(ii) Ethernet	
	b)	Write FBD program to control speed of motor for following conditions:	
		(i) When start button pressed it turned on the motor?	
		(ii) When speed of motor increases on/above 1200 rpm motor will turn of automatically?	
	c)	Develop modular program for petrochemical continuous process plant and explain.	

Marks

area explain any one in detail.

4.		Atte	mpt any <u>TWO</u> of the following:	16
	a)	Draw in de	v and explain schematic of PC work station and servers etail.	
	b)	With detai	suitable diagram describe hot standby architecture in l.	
	c)		e SFC (sequential flow chart) program for temperature rol loop system for following conditions.	
		(i)	System is used for measurement and control of temperature in the range $+275^{\circ}\text{C}$ to $+300^{\circ}\text{C}$.	
		(ii)	If temperature below 275°C, heater will 'ON' and fan will 'OFF'.	
		(iii)	If temperature above 300°C, heater will 'OFF' and fan will 'ON'.	
		(iv)	Use separate ON/OFF switches for overall system.	
5.		Atte	mpt any <u>TWO</u> of the following:	16
	a)	(i)	State any four application of automation.	
		(ii)	State role of PLC and DCS in automation.	
	b)	(i)	Describe intelligent transmitters and buses.	
		(ii)	State features of mod bus (any four points)	
	c)	List	different local operator stations used in safe and hazardous	

Marks

17665 [4]

Marks

6. Attempt any TWO of the following:

16

- a) Draw generalized block diagram of distributed control system (DCS). State function of each block.
- b) (i) State any four remote input devices and four remote output devices used in hazardous area.
 - (ii) State their features.
- c) (i) Draw and describe co-axial network cabling.
 - (ii) State characteristics of:
 - 1) Copper network cabling
 - 2) Fiber optic cabling