21415

3 Hours/100 Marks	Seat No.					
Instructions :	(1) All questions are compulsory.					
	(2) Illustrate your answers with neat sketches wherever necessary.	,				
	(3) Figures to the right indicate full marks.					
	(4) Assume suitable data, if necessary.					
	MA	ARKS				
1. A) Attempt any th	iree :	12				
a) Name the fa	actors which are affecting the rate of reaction. (any four)					
b) Define inter	nal energy and enthalpy. State their units.					
c) What is aut	ocatalytic reaction ? Give its example.					
d) Differentiate	e between batch and continuous reactors.					
B) Attempt any or	ne:	6				
a) Derive a kir	netic expression for second order reaction $2A \rightarrow$ products.					
b) The rate co at 10°C and	nstants of a certain reaction are 1.6×10^{-3} and 1.625×10^{-2} (S) ⁻¹ I 30°C. Calculate the activation energy.					
2. Attempt any two:		16				
a) Give mathema activation is ob	tical statement of Arheniou's law. Explain how energy of tained graphically.					
b) In an isotherma	al batch reactor, the conversion of a liquid reactant A achieved					

- in 13 min is 70%. Find the space time and space velocity necessary to effect this conversion in a plug flow reactor and in a mixed flow reactor. Consider first order kinetics.
- c) List methods of catalyst preparation . Explain any two method in detail.

17562

17562

-2-

Marks

16

12

3. Attempt any four :

- a) Why knowledge of thermodynamics is essential to understand chemical reaction engineering?
- b) Give the relation between C_A and C_{AO} for constant volume system and variable volume system.
- c) During the preparation of carbon monoxide by the reaction.

 $CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$ at 1175 k and 1.02 atm pressure, the partial pressure of CO_2 , H_2 and CO are 0.218, 0.258 and 0.272 atm respectively. Calculate K_p for the reaction.

- d) Differentiate between molecularity and order of reaction (any four points).
- e) Name the three catalyst deactivation categories. Describe any one.

4. A) Attempt any three :

a) Show that the decomposition of N_2O_5 at 67°C is a first order reaction. Calculate the value of the rate constant.

Data :

Time, min.	0	1	2	3	4
C _{N2} O ₅ , mol/l	0.16	0.113	0.08	0.056	0.040

- b) Draw the diagrams of :
 - i) Packed bed reactor
 - ii) Multibed reactor
 - iii) Multi-tube fixed bed reactor
 - iv) Fluidised bed reactor.

17562

- c) Define rate of reaction and rate constant. Give the units of rate constant for zero order and first order reaction.
- d) How the feasibility of chemical reaction is determined from Gibbs free energy change ?
- B) Attempt any one :
 - a) Define activation energy. Draw the diagram showing the activation energy for exothermic and endothermic reaction. What is the role of activation energy in a chemical reaction ?
 - b) Explain relationship between standard Gibb's free energy and equilibrium constant.

5. Attempt any two :

- a) Derive the integrated form of rate expression for constant volume first order reversible reaction A = B in terms of concentration and conversion. Give the graphical representation also.
- b) Derive the design equation for batch reactor.
- c) Compare the performance of mixed flow reactor and plug flow reactor. (Any 4 points)

6. Attempt any four :

- a) Why plug flow reactors are not put in series ?
- b) Define the following terms :
 - i) Chemical potential
 - ii) Fugacity
 - iii) Gibbs free energy
 - iv) Entropy.

16

6

16

Marks

- c) Differentiate between elementary and non-elementary reactions (any four points).
- d) Decomposition of a gas is second order. When the initial concentration of gas is 5×10^{-4} mol/l, it is 40% decomposed in 50 min. Calculate the value of rate constant.
- e) Define the term space time and space velocity with their units and mathematical expression.