

21415

17538

3 Hours/100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions: (1) All questions are compulsory.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) **Assume** suitable data, if **necessary**.

MARKS

1. A) Attempt any three:

12

- i) Define transfer function. Derive an expression for transfer function of closed loop system.
- ii) What are different standard test inputs? Draw them and give their laplace transform.
- iii) Define stable, unstable and critically or marginally stable system.
- iv) Draw electronic PI controller diagram and write its output equation.

B) Attempt any one:

6

i) Find the transfer function of RLC circuit shown in Figure 1.

FIGURE1: RLC CIOCUIT

ii) Draw the bode plot for the open loop transfer function.

G(s) H(s) =
$$\frac{10}{s(1+5s)(1+20s)}$$

MARKS

2. Attempt any two:

16

a) Using Routh's criteria, determine the range of K values for system to be stable

G(s) H(s) =
$$\frac{K}{s(s+2)(s+4)(s+5)}$$

- b) i) Draw a neat sketch of synchro as an error detector.
 - ii) Compare DC servomotor and AC servomotor.
- c) Derive the transfer function of the system shown in Figure 2 using block diagram reduction techniques.

Figure 2

3. Attempt any four:

16

- a) Compare open loop and closed loop control system (any four points).
- b) Draw neat sketch of unit step response of second order system. Define rise time and settling time.
- c) Draw the diagrams for stability of the system w.r.t. root location in s-plane.
- d) Compare stepper motor and DC servo motor.
- e) Draw and describe the block diagram of process control system.

4. A) Attempt any three:

12

- i) Draw electronic PID controller and state its equation.
- ii) Define the following terms related with frequency response
 - a) Bandwidth
 - b) Cut of frequency
 - c) Gain margin
 - d) Phase margin.

MARKS

iii) For open loop transfer function $G(s) = \frac{10}{s(0.5s + 1)}$

Determine:

- a) Damping ratio
- b) Undamped natural frequency
- c) Damped natural frequency
- d) Maximum overshoot.
- iv) With neat sketch, describe potentiometer as an error detector.

B) Attempt any one:

6

- i) Describe working of variable reluctance type stepper motor with suitable diagram.
- ii) A second order system is given by $\frac{C(s)}{R(s)} = \frac{6}{s^2 + 5s + 6}$.

Determine:

- a) Rise time
- b) Peak time
- c) Settling time
- d) Peak overshoot.

5. Attempt any four:

16

- a) State how AC servomotor differ from a normal 2-phase induction motor and draw its torque-speed characteristics.
- b) Compare P; I and D control actions on the basis of nature of input, response to error, equation and applications.
- c) By means of Routh's criteria determine the stability of the system $s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$.
- d) Define:
 - i) Linear system
 - ii) Nonlinear system
 - iii) Time variant system
 - iv) Time invariant system.
- e) Derive an expression for unit ramp response of first order system. Draw its response.
- f) State two advantages and two disadvantages of frequency response analysis.

MARKS

6. Attempt any four:

16

- a) With the help of neat diagram define steady state response and transient response of system.
- b) For a given transfer function $\frac{C(s)}{R(s)} = \frac{s(s+2)}{(s^2+2s+2)(s^2+7s+12)}$

Find:

- i) Pole
- ii) Zero
- iii) Pole zero plot
- iv) Characteristics equation.
- c) A unity feedback control system $G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$

Find:

- a) Type of system
- b) All error coefficients (Kp, Kv and Ka)
- d) State any two advantages and two disadvantages of routh array.
- e) Determine the stability of system using routh's criterion.

$$s^5 + s^4 + 2s^3 + 2s^2 + 2s + 2 = 0.$$
