17510

Т

21415

3 Hours/100 Marks

	Seat No.
Instructions:	(1) Answer each next main question on a new page.
	(2) Illustrate your answers with neat sketches wherever
	necessary.
	(3) Figures to the right indicate full marks.
	(4) Assume suitable data , if necessary.
	(5) Use of Non-programmable Electronic Pocket Calculator
	is permissible .

Г

Marks

12

6

- 1. A) Attempt **any three** of the following :
 - a) Draw a single-line diagram of modern power system indicating essential components.
 - b) State the expression for Complex power, Real power and Reactive power at sending end of transmission line.
 - c) State the difference between 'A-C. resistance' and 'D.C. resistance' of a conductor.
 - d) For a generalised two port π (pi) network. Prove that AD BC = 1 where A, B, C, D are GCC.
 - B) Attempt any one of the following :
 - a) Explain the procedure to measure GCC of a erected to line.
 - b) Define 'self GMD' and 'Mutual GMD' with an example.
- 2. Attempt any two of the following :
 - a) i) List out the advantages of generalised circuit representation in power system analysis.
 - ii) Write expression for co-ordinates of centre and radius for sending end and receiving end circle diagram.

MARKS

- b) A three phase line with equilateral spacing of 3 mt. is to be rebuilt with horizontal spacing such that $D_{13} = 2D_{12} = 2D_{23}$. The line conductors are fully transposed. Determine the spacing between adjacent conductors so that the new tr. line has the same inductance as the original line.
- c) In a three phase line with 132 kV at receiving end has A = D = 0.98 3° , B = 110 $75^{\circ} \Omega$. Find the sending end power if load of 200 MW at 0.8 p.f. lagging p.f. is being delivered at receiving end. Calculate the max. power demand for V_R = V_S = 275 kV.
- 3. Attempt any four of the following :
 - a) Draw reactance diagram for given power system as shown in Fig.1. considering generator rating as common base values.

Fig. 1.

- b) Explain the stepwise procedure to draw sending end circle diagram.
- c) Determine the loop inductance of single phase tr. line comprised of solid conductors of diameter 1.5 cm. and spacing between two conductors as 7 mt.
- d) A 200 kV tr. line base GCC A = 0.86 $|Z^{\circ} \rangle$ B = 300 $|Z5^{\circ} \rangle \Omega$. Determine real power at unity p.f. that can be received if voltage at both end are maintained at 200 kV.
- e) Derive an expression for capacitance of single phase tr. line comprised of solid conductors.

-3-

17510

12

4. A) Attempt any three of the following :

- i) Define skin effect. State the factors on which skin effect depends?
- ii) A 50 Hz, 3ϕ , 27 kV line has following GCC A = 0.896 0.7° , B = 138.7 84.2° . If line is supplied at 275 kV determine the MVA rating of shunt reactor that would be required to maintain 275 kV at receiving end when line is delivering no load.
- iii) State advantages of p.v. system in power system analysis.
- iv) State the necessity of reactive power compensation. Explain any one method of the reactive power compensation.
- B) Attempt any one of the following :
 - a) A 3 ϕ , 50 Hz line has resistance of 20 Ω , inductance 0.2 H and capacitance 1 μ F. All parameters are per km. Length of line is 150 km and delivers a load of 50 MW at 132 kV, 0.8 lag. p.f. Determine ABCD constants of the line (considering π model).
 - b) Determine the self G.M.D. of conductors shown in Fig. 2. Assume r = 0.1 cm :

- 5. Attempt any two of the following :
 - a) Two transmission line networks are connected in series. Determine A, B, C, D constants of overall network.
 - b) A 3φ, 132 kV tr. line delivers 40 MVA at 0.8 p.f. laging. Determine sending end voltage with the help of circle diagram. Given that A = 0.98 3°
 B = 110 72° Ω. Also find max. power delivered at receiving end.

6

MARKS

c) Determine inductive reactance of 1ϕ tr. line with the arrangement as shown in fig. 3. The diameter of each conductor is 1 cm. and current is equally shared by two parallel conductors.

6. Attempt any four :

- a) Derive the expression for complex power at receiving end of the line with generalised circuit.
- b) Prove that p.u. reactance of transformer remains same refer to both side of the transformer.
- c) Give significance of inductance, resistance and capacitance parameters of tr. line.
- d) State the field of applications of following reactive power compensators :
 - i) Shunt capacitor bank
 - ii) Series inductor bank
 - iii) Synchronous condenser
 - iv) Auto transformer.
- e) A 3 phase, 50 Hz, line is 250 km long. It has series impedance $35 + j 40 \Omega$ and shunt admittance $930 \times 10^{-4} \Im$. It delivers 40 MW at 220 kV with 0.9 lag. p.f. Determine ABCD constant considering medium line having nominal T circuit.