Scheme - I

Sample Question Paper

Program Name	: Diploma in Chemical Engineering	
Program Code	: CH	22515
Semester	: Fifth	22313
Course Title	: Numerical Methods in Chemical Engineering (Elective)
Marks	: 70	Time: 3 Hrs.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1) Attempt any FIVE of the following.

- a) Give any two applications of SCILAB software to solve numerical methods.
- b) Compare Gauss Jordan and Gauss-Seidal methods for solving linear system of the form AX= B.
- c) Give the condition for Simpson's 3/8 rule and state the formula.
- d) State the order of convergence and convergence condition for Newton-Raphson method.
- e) State the formula to solve second order differential equation using Runge-Kutta method.
- f) Give any two applications of SCILAB software to solve algebraic equations.
- g) Give the formula to solve second order differential equation using Taylor's Series method.

Q.2) Attempt any THREE of the following.

- a) Explain the use of SCILAB software for solution of differential and integral equations.
- b) Explain method to compute inversion of matrix using Gauss elimination method.
- c) Using Trapezoidal rule evaluate $0 \int_{-\infty}^{\pi} \sin x \, dx$ by diving the range into 6 equal parts.
- d) Find the root of $4x e^x = 0$ that lies between 2 and 3 by Newton-Raphson method.

1

10 Marks

Q.3) Attempt any THREE of the following.

- a) Evaluate the integral $_{0}\int^{4} (1-e^{-2x}) dx$ by Simpson's 1/3 rule.
- b) Find the root of the equation $xe^2 = \cos x$ by Regula-Falsi method.
- c) Determine the positive root of $\ln(X^4) = 0.7$ using three iteration of the Bisection method with initial guesses 5 and 10.
- d) Find by Taylor's Series method, the value of y at x=0.1 from $dy/dx=y^2+x$, y (0) =1.

Q.4) Attempt any THREE of the following.

- a) Evaluate the integral $0\int^{3} (5+3\cos x) dx$ by Trapezoidal rule.
- b) Using Euler's method find y (0.1) given that dy/dx = x+y, y(0)=1.
- c) Evaluate the integral $\int x^2 e^x dx$ by Simpson's 1/3 rule.
- d) Find the root of the equation tanx=x, Correct to three decimal places using Newton-Raphson method.
- e) Evaluate the integral $_{0}\int^{\pi/2} (6+3\cos x) dx$ by Simpson's 3/8 rule.

Q.5) Attempt any TWO of the following.

- a) Describe the use and features of SCILAB software in details for numerical methods.
- b) Solve 10x+y+Z=12, 2x+10y+z=13, x+y+5z=7 by Gauss-Jordan method.
- c) Evaluate the integral of the following tabular data with Simpson's 3/8 rule.

Х	0	0.1	0.2	0.3	0.4	0.5
F(x)	1	8	4	3.5	5	1

Q.6) Attempt any TWO of the following.

- a) Find the smallest positive root of the equation $xe^{-2x} = 1/2$ sinx. Correct to three decimal places using Newton-Raphson method.
- b) Determine the value of y when x=0.1 given that y(0)=1 and dy/dx=x²+y by using Euler's modified method.
- c) Solve the equation dy/dx=1/x+y, y(0)=1 for y(0.1) and y(0.2) using second order Runge-Kutta method.

12 Marks

12 Marks

12 Marks

Scheme - I

Sample Test Paper - I

Program Name	: Diploma in Chemical Engineering	
Program Code	: CH	22515
Semester	: Fifth	
Course Title	: Numerical Methods in Chemical Engineering (I	Elective)
Marks	: 20	Time: 1 Hour.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a) Give any two applications of SCILAB software to solve differential equations.
- b) State the condition for convergence of Gauss-Seidal method.
- c) Name the two direct methods to solve a system of linear equations.
- d) Give any two applications of SCILAB software to solve numerical methods.
- e) Give the transpose of the matrix of coefficients.
- f) State the formula to solve given numerical integration by applying Trapezoidal Rule.

Q.2 Attempt any THREE.

١

- a) Explain the features of SCILAB software for application of numerical methods.
- b) Solve the given system equations by using Gauss-seidal iteration method 20x-y-

2z=17, 3x+20y-z= -18, 2x-3y+20z=25.

- c) Draw the flow chart for Gauss elimination method.
- d) Using Gauss-Jordan method find the inverse of $A = \begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$

1 3 -3 -2 -4 -4

- e) Solve 10x+y+Z=12, 2x+10y+z=13, x+y+5z=7 by Gauss- Jordan method.
- f) Evaluate the integral $\int_{0}^{\pi/2} (6+3\cos x) dx$ by Trapezoidal rule.

08 Marks

Scheme - I

Sample Test Paper - II

Program Name	: Diploma in Chemical Engineering		
Program Code	: CH	22515	
Semester	: Fifth		
Course Title	: Numerical Methods in Chemical Engineering (I	Elective)	
Marks	: 20	Time: 1 Hour.	

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a) Give the condition for Simpson's 1/3 rule and state the formula.
- b) State the formula to solve given algebraic equation by Bisection method.
- c) Give the criterion for the convergence of Newton-Raphson method.
- d) Give the formula to solve second order differential equation using Taylor's Series method.
- e) State the formula to solve given numerical integration by Euler's method.
- f) State the formula to solve given numerical integration by Runge-Kutta method.

Q.2 Attempt any THREE.

- a) Evaluate the integral $\int (1-e^{-2x}) dx$ by Simpson's 3/8 rule.
- b) Find the smallest positive root of the equation $x^3+5x+1=0$. Correct to three decimal places using Newton-Raphson method
- c) Find the root of the equation $\cos x xe^x = 0$ by Regula-Falsi method.
- d) Using Modified Euler's method find y (0.1) if $dy/dx = x^2+y^2$, y(0)=1.
- e) Consider initial value problem $dy/dx=y-x^2+1$, y(0)=0.5 using second order Runge-Kutta method find y(0.4) and y(0.6).
- f) Find by Taylor's Series method, the value of y at x=0.1 from $dy/dx=y^2+x$, y (0) =1.

08 Marks