

WINTER – 19 EXAMINATION

Model Answer

Subject Code:

```
22440
```

Subject Name: Advance Auto. Engg. Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept

8)

0	SUB					MARKING
Q.	Q.			ANSWER		SCHEME
IN	N.					
1		Atten	npt any FIVE o	of the following.		10
	a	State	the general cor	nditions necessary for combustion.		02
	Ans.	Three	things are req	uired in proper combination before i	gnition and combustion can take	Correct
		place	Heat, Oxygen	and Fuel. There must be Fuel to bu	rn. There must be Air to supply	Answer
		oxyge	en. There must	be Heat (ignition temperature) to st	art and continue the combustion	01
		proces	SS.			Mark
	b	State	the effect of de	tonation.		02
	Ans.	Effec	ts of Detonatio	on:		Any
		1. No	ise and roughne	ess: Mild knock is seldom audible an	d is not harmful. When intensity	Two
		of kn	ock increases a	loud pulsating noise is produced d	ue to development of a pressure	01
		wave.	The presence of	of vibratory motion causes crankshaf	t vibrations and engines rough.	Mark
		2. Me	echanical damage	ge: Due to rapid pressure waves, rate	e of wear is increased and pistor	each
		head,	cylinder head a	and valves may be pitted.		
		3. Ca	rbon deposits: I	Detonation results in increased carbor	n deposits.	
		4. Inc	crease in heat t	ransfer: Temperature in detonating	engine is higher as compared to	
		non -	detonating eng	gine and hence scoring away the pro-	tecting layer of inactive stagnant	
		gas. S	so detonation in	creases the rate of heat transfer to co	mbustion chamber walls.	
		5. De	crease in power	r output and efficiency: Due to increa	ase in the rate of heat transfer the	
		powe	r output is decre	eased.		
		6. Pre	e ignition: Deto	onation results in over heating of the	e sparking plug and combustior	
		cham	ber wall and thi	is overheating leads to ignite the char	ge before the passage of spark.	
	c	State	the function ar	nd location of oxygen sensor and mas	s air flow sensor.	02
	Ans.	S.	Name	Function	Location	Correct
		N.				Ans.
		1	Oxygen	Measuring quantity of oxygen in	Located at inlet and outlet	01
			Sensor	exhaust	side of catalytic convertor	Mark
		2	Mass Air	It is used to tell ECU the mass of	Mounted between air filter	Each

	Flow Sensor	and turbocharger.	
 d	List four drawback of	carbureted SI Engine.	02
Ans.	Drawback of Carbure	ted SI Engine:	1/2 M 1
	1) AIF-FUEL Katlo: As	In SI engine Air-luel ratio varies from 8:1 to 18.5:1 i.e. from 8 kg of	Mark
	all/kg of fuel to 18.5 kg	, of all/kg of fuel. Kicher of leaner alf-fuel ratio finit causes the engine	Each
	2) Fuel consumption:	use to full at all.	
	2) Fuel consumption:	As atomization rate deepened upon velocity of an in venture also As in veries from 8:1 to 18 5:1 so Eyel consumption is more in SL engine	
	3) Power output: Power	ar output varies due to variation of Air fuel ratio	
	4) Emission. As in SL	engine Air-fuel ratio varies from 8.1 to 185.1 i.e. from 8 kg of air/kg	
	of fuel to 18 5 kg of air	/kg of fuel So emission is more in SL engine	
	* (any suitable answer	can be considered)	
	(any sumation answer		
e	List two dis advantage	es and advantages of CNG.	02
Ans.	Dis - advantages:		
	1. Low engine perform	nance.	Any two
	2. Low engine volume	tric efficiency.	advantages
	3. Need of large pressu	urized fuel storage tank.	and
	4. Refuelling is a slow	process	disadvantages
	5. Inconsistent fuel pro	operties.	1/2
	Advantages:	1	Mark
	1. CNG reduces the ha	rmful emission	Each
	2. Operating cost of the	e vehicle running on CNG is lower.	
	3. Reduced vehicle ma	intenance.	
	4. Fuel theft is not pos	sible. Since NG cannot be siphoned off from a vehicle	
	5. CNG contains less c	arbon than any other fossil fuel.	
	6. CNG vehicle is as sa	afe as petrol vehicle	
	7 CNG has a much hig	her Octane Number.—So, it is superior to petrol. And the anti-	
	knock additives are no	t required.	
	8. Being a gaseous fue	l, CNG mixes with air easily and evenly.	
	9. Almost any petrol /	diesel vehicle can be converted to operate on CNG.	
	10. CNG is non-toxic.		
	11. CNG is lighter that	n air and so Dissipates into atmosphere implies less chance of fire	
	_		
f	Enlists various polluta	nts from the gasoline engine. State their effect on environment.	02
Ans.	Pollutants from Gasol	ine Engine & their effect on Environment:	Lists of
	Pollutant	Environmental Effect of Pollutants	Pollutants
	1 Hydrocarbons	They play an important role in forming NO2 and O3 which are health and	01 Mart
	1. Hydrocaroons	environmental hazards.	IVIAIK L
	2. Carbon Monoxide	CO is a highly poisonous gas that can cause dizziness, headaches,	C Their offect
		impaired thinking, and death by O2 starvation.	
		It can affect the central nervous system, impairing physical coordination,	environment
		productivity and increasing personal discomfort	01
		F	Mark
	Carbon dioxide	CO2 is a greenhouse gas and may be the major cause of global warming.	
	4. Oxides of	NO is unhealthy and contributes to the formation of smar areas and sold arise	
	Nitrogen	to are gas and contributes to the formation of smog, ozone, and acid fam.	
	L		

	g	State four method to control diesel smoke.	02
	Ans.	 Methods to Control Diesel Smoke: 1. De-rating:- At lower loads, the air: fuel ratio obtained will be leaner & hence the smoke developed will be less. However this means a loss of output. 2. Maintenance: - Maintaining the injection system of engine properly results in a significantly reduced smoke, best engine performance, and clean exhaust system. Other methods are changes in Combustion chamber geometry. 3. Smoke suppressant additives:- Some barium compound, if used in fuel, reduce the temp of combustion, thus avoiding the soot formation, & if formed- they break it into the fine particles, thus appreciably reducing smoke. 4. Fumigation: - Fumigation consists of introducing a small amount of fuel into the intake manifold. This shortens the delay period- curbs thermal cracking which is responsible for soot format 	Four Method 1/2 Mark Each.
2		Attempt any THREE of the following:	12
	a	Describe the Air Fuel Ratio in CI Engine.	04
		Thermodynamic analysis of the engine cycles has clearly established that operating an engine with a leaner air-fuel ratio always gives a better thermal efficiency but the mean effective pressure and the power output reduce. The CI engine is always designed to operate with an excess air, of 15 to 40% depending upon the application. The power output curve for a typical CI engine operating at constant speed is shown in Fig. given below. The approximate region of A/F ratios in which visible black smoke occurs is indicated by the shaded area.	Correct Answer 04 Mark Each

Ans	Select a compustion chain Selection of a Compustion	Chamber for Petrol Engine with Justification:	U4 List
Ans.	Compustion Chamber	Instification	Lisi Of
	Compustion Chamber	Justification	Combustion
	1) T Head Type	1 Easy to manufacture flat cylinder head	Chamber
	Combustion Chambers	2. Lower height of engine and front hood for better frontal	02
	2) L Head Type & Side	visibility of vehicle	Marks
	Head Combustion	1. Neat and compact layout	&
	Chambers	2 Easy to lubricate valves easy to decarbonize engine	Justification
	3) F- Head	1 High volumetric efficiency	of
	Combustion Chamber	2 Maximum compression ratio for fuel of given octane	Any Two
	Combustion Chamber	rating	01
		3 High thermal efficiency	Mark Each
		4. It can operate on leaner air-fuel ratios without misfiring	
	A) Over Head Value or	1. Lower pumping losses and higher volumetric efficiency.	
	4) Over fieua vaive of I Hoad	2. Lesser distance of flame travel. Therefore low octane	
	(Rathtub and	requirement.	
	(Dainiub ana Wedge Shaped)	3. More uniform cooling of cylinder and piston.	
	Combustion Chamber	4. Lower surface to volume ratio and therefore less heat loss.	
	Combustion Chamber	5. Easier to cast and hence lower casting cost.	
	5) Ricardo Turbulent	1. Faster flame speed,	
	head side valve	2. Reduced detonation	
	Combustion chamber	3. Homogeneous air: fuel mixture formation.	
	Illustrate with example of	fuel injection as an output control function of ECM.	04
	and during deceleration. A CMP, MAP, CTS and O ₂ ar meets the engine requirem (ROM/RAM/KAM). Illustration: Idle speed	s ECM receives inputs from various sensors such as TPS, CKP, and other sensors, it calculates the injector pulse width that precisely ment. ECM refers Look-up tables and maps stored in memories	Description 02 marks &
	Temperature Figure: ECM I	Block Diagram and Fuel Injection Control Function ranked by the starter, and when the engine is colder than operating	Illustration 02 marks

3		Attempt any THREE of the following:		12
	a	Sketch and describe LPG fuel supply system	n layout.	04
	Ans.	External	Filtered air to	
		Filler	Throttle device	
		Valve		
				Shatah
		LPG	Intake manifold	Skeich 03
		Tank	Pressure Sensor	Marks
				1 111 115,
		↓		
		Gas Shut-off Evapor	rator LPG injectors at I.C. engine	&
		valve press	ator Intake port - combustion	
			↓	
		Petrol / Gas LPG – Electronic CAN int	terface Diagnostic Diagnostic	
		Switch	Lamp Interface	
		Figure: LPG Fuel Supply S	System Layout for SI Engine.	
		The system works by pumping LPG at high p	ressure from the LPG vehicle tank to the engine	Description
		inlet manifold via a set of liquid LPG injected	ors. The injectors spray the liquid LPG into the	01 marks
		intake manifold. The fuel vaporizing in the in	take manifold cools and increases the density of	
		the intake air.		
	b	LPG is used as a fuel for netrol engine. Just	ify your answer.	04
	Ans.	LPG is used as a fuel for petrol engine, beca	use of its following advantages	
		1. It is cheaper than petrol	2. It is highly detonation resistant and does	
			not pre-ignite easily.	
		3. It gives better manifold distribution and	4. Residue and oil contamination is small as	Any
		mixes easily with air.	it burns cleanly: implies longer lubricating	Uð Iustification
		5 I DC is lead free implies less exhaust	oil change period.	<i>Justification</i> 1/2
		emission	6. Life of spark plug is increased.	Mark
		7. LPG has a higher octane rating than	8. It meets emission norms	Each
		petrol.		
		9. It can be transported easily to remote	10. It results in increased engine life and	
		places by road and also by rail.	smoother engine performance.	
		11. Crankcase oil dilution is small. So, oil	12. Low engine deposits reduce the cost of	
		13 Engine need not be modified LPG kits a	maintenance.	
		and the kit cost is mostly affordable	are readily available (even for with the engines)	
		(NOTE: Credit Should be given to any other	· Appropriate Answer)	
	c	Describe features of Variable Valve Timing	Mechanism (VVT)	04
	Ans.	Features of VVT: Variable valve timing (VV	T) is a system for varying the valve opening of an	
		internal combustion engine. This allows the	engine to deliver high power, but also to work	Dereció
		tractably and efficiently at low power. The	re are many systems for VVT , which involve	Description
		changing chiler the relative tilling, duration of	opening of the engline's filler and exhaust valves.	Marks

		Cam Changing VVT:	0
		Stage 1 (Low Speed): The 3 pieces of rocker arms moves independently. Therefore the left	ď
		rocker arm, which actuates the left inlet valve, is driven by the low-lift left cam. The right	
		rocker arm, which actuates the right inlet valve, is driven by the medium-lift right cam. Both	Three
		cams' timing is relatively slow compare with the middle cam, which actuates no valve now.	Foaturos
		Stage 2 (Medium Speed): Hydraulic pressure (painted orange in the picture) connects the left	n earlines
		and right rocker arms together, leaving the middle rocker arm and cam to run on their own.	Mark
		Since the right cam is larger than the left cam, those connected rocker arms are actually driven	Each
		by the right cam. As a result, both inlet valves obtain slow timing but medium lift.	Buch
		Stage 3 (High Speed): Hydraulic pressure connects all 3 rocker arms together. Since the	
		middle cam is the largest, both inlet valves are actually driven by that fast cam. Therefore, fast	
		timing and high lift are obtained in both valves	
	d	Describe any four methods to improve fuel economy.	04
	Ans.	Methods to Improve Fuel Economy:	
		1. Use of multi-functional fuel additives will provide 3 to 4% fuel economy.	Anv
		2. Good driving habits.	Four
		3. Properly maintained fuel supply system.	01
		4. Use of computer controlled fuel injection system.	Mark
		5. Use of computer controlled ignition system.	Each
		6. Use of higher voltage automotive electrical system (42 volts system).	
4		Attempt any THREE of the following:	12
	а	Describe the working of pressure regulation in PFI system with the help of schematic	04
		diagram.	
	Ans.	Working of Pressure Regulator in PFI System:	
		The fuel pump provides more fuel than the maximum required by the engine. Fuel not used by	
		the engine is returned to the fuel tank. The fuel rail supplies all injectors. The pressure regulator	
		keeps the pressure drop across the injector fuel line and the intake manifold as constant. It	Description
		contains a diaphragm that has intake manifold pressure on one side and fuel rail pressure on the	02
		other. Normally, it is mounted at the outlet end of the fuel rail. The diaphragm operated a valve	marks
		which opens at a differential pressure between 2.0 and 3.5 bar and allows excess fuel to return	
		to the fuel tank.	
		connected to	&
		vacuum inlet manifold	
		pressure spring	
		Fuel inlet ball valve	Diagram
		to pressure	02 marks
		regulator	
		regulator	
		ψ.	
		Patrice line	
		to fuel tank	
		Figure: Fuel Pressure Regulator Operation	
	b	Describe the procedure to locate leakage in Compressed Natural Gas Fuel supply system	04
		of a car. State relevant precaution.	
	Ans.	Procedure to locate Leakage in Compressed Natural Gas Fuel Supply System of a Car:	Procedure
		1. The first indicator is the foul smelling agent present in CNG.	02
		2. The second level of test you can do is to take a soap solution and apply the same in all	Marks

	possible are 3. There is the CNG re Precaution 1. When a g	eas of leak. one more weaches 20% of the stobe take gas leak is su	yay you can is of the explosi en During Le uspected, exti	nstall a ve limi akage nguish	gas le t. Identi f all flar	ak detec f ication: nes, ince	tor .Th	ey detect cks, etc.	gas leaks	as soon as	and Precautions 02 Marks
	3. Put the s	afety cap on	the cylinder.								
c	Sketch and	l describe tl	ne layout of s	eries h	ybrid	vehicles	•				04
Ans.			Battery	\langle					N 11 661		Sketch 02 Marks
		Internal Combustion	Engine)—	Electronics	Motor	Gearbox		Differential		And
	Series-Hy In Series H	Fig brid vehicle lybrid vehic	gure: Block	Diagra	ombust	Series ty ion Eng	pe Hy ine (IC	brid Car	a genera	tor, which	Description 02 Marks
	motor proj speed with electronica Both Intern It has low	pels the can maximum illy. The elenal combust overall system	In this system efficiency, It ectric contro ion engine an em efficiency	stem, 1 causes l simp nd elec 7.	nterna s low e lifies tric dri	Combi exhaust of the mec ive have	emissic hanica to be 1	Engine of ons. The value of the	vehicle is and the date of maximum	t constant controlled ifferential. um power.	
d	Prepare a	chart of eur	o norms for	a petro	ol engi	ne of ca	ſ .				04
Ans.	Chart of E	uro Norms	for a Petrol	Engine	e of Ca	r:					Any Eour
	Tier	Date (Type Approval)	Date (First Registration)	СО	ТНС	NMHC	NO _x	HC + NO _x	PM	PN[#/km]	Norms 01
	Euro 1 +	July 1992	January 1993	2.72				0.97			Mark Each
	Euro 2	Jan. 1996	January 1997	2.2				0.5			
	Euro 3	Jan.2000	January 2001	2.3	0.20		0.15				
	Euro 4	Jan. 2005	January 2006	1.0	0.10		0.08				
	Euro 5a	Sept. 2009	January 2011	1.0	0.10	0.068	0.060		0.005**		
	Euro 5b	Sept. 2011	January 2013	1.0	0.10	0.068	0.060		0.0045**		
	Euro 6b	Sept. 2014	Sept. 15	1.0	0.10	0.068	0.060		0.0045**	6 X 10 ^{11***}	
	Euro 6c		Sept. 18	1.0	0.10	0.068	0.060		0.0045**	6 X 10 ¹¹	
	Euro 6d - Temp	Sept. 2017	Sept. 19	1.0	0.10	0.068	0.060		0.0045**	6 X 10 ¹¹	
	Euro 6d	Jan. 2020	Jan. 2021	1.0	0.10	0.068	0.060		0.0045**	6 X 10 ¹¹	
	*Before Eu I. ** Applies ***6 X 10 ¹ + Values in	ro 5, Passenge only to vehicle ¹ / km within fi	er Vehicles >25 es with direct in irst three years	00kg. w njection from Eu	ere type engine. ro 6b ef	e approved fective da)P) limit	1 as Ligl tes.	ht Commer	cial Vehicle	es N ₁ Class	

	Δ	Describe the work	ing of PCV System		04
	Ans	Working of PCV s	vstem•		Explanation
	1115.	During normal com	pression stroke, a small amount of gases i	n the combustion chamber escapes	02
		past the piston. App	proximately 70 % of these 'blow-by' gase	es are unburned fuel (HC) that can	Marks
		dilute and contamin	ate the engine oil, cause corrosion to criti	ical parts, and contribute to sludge	
		build up. At higher	engine speeds, blow-by gases increase cra	ankcase pressure that can cause oil	
		leakage from sealed	l engine surfaces. The purpose of PCV s	ystem is to remove these harmful	
		gases from the crar	kcase before damage occurs and combin	ne them with the engine's normal	
		incoming air: fuel	mixture. PCV system uses a variable flo	w PCV valve accurately matches	
		ventilation flow wi	th blow-by production characteristics. B	by accurately matching these two	
		factors, crankcase	ventilation performance is optimized,	while engine performance and	
		drivability remains	unaffected.		æ
			Air Filter Air Input	<u> </u>	
				Carburetor	
			-	body	
					Skatak
		Cl	osed oil		
		fill	er cap	PCV	Marks
				Valve	
			Intaka Crankcase	L	
			manifold vapors and	7	
			vacuum gases /		
) + (
			도 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그		
			Figure: PCV System		
5		Attempt any TWO	of the following:		12
5	9	Compare the SI an	d CI engine on the basis of (i) Compre	ssion Ratio (ii) Onerating Sneed	06
	a	(iii) Power O/P ner	weight.	ssion Ratio (ii) Operating Speed	00
	Ans.				Each
		Parameter	SI Engine	CI Engine	Correct
		(i) Compression	Compression ratio is low, about 10:1	Compression ratio is	Point
		Ratio	limited by detonation	higher, about 18:1 to 22:1	02
		(ii) Operating	To avoid Detonation in SI Engine	To avoid Diesel knock	Marks
		Speed	operating speed is High	operating speed is Low	Each
		(iii) Power O/P	Power output is Less than CI engine	Power output is more than	
		per weight.	due to lower compression ratio.	SI engine due to higher	
				compression ratio.	
	b	Describe the work	ing of electronic fuel injector with the h	elp of suitable sketch.	06
	Ans.	Working of Electi	onic Fuel Injector:		Description
		In MPFI system, T	op feed fuel Injector is used. These injector	ctors are solenoid-operated valves	
		that are opened an	d closed by means of electric pulses f	rom the ECU. The injectors are	03
		mounted in the inta	ke manifold and spray onto the back of	the intake valves. In general, one	Mart
		The injected fuel w	cach cynnder.	a time (for a given pressure dree	<i>warks</i>
		across the injector)	In MPEI systems, each angine cylinder i	s assigned an electromagnetic fuel	

6		Attemp	t any TWO of the following:		12
	a	Compa	re Throttle Body Injection and Port Fu	el Injection of Petrol Engine.	06
	Ans.	Sr.	TBI system	PFI System	
		No.			
		1			
		1	Fuel is injected into the center of the	Fuel is injected into the port	
		2	TBL uses bottom feed injector	PEL uses top feed injector	
		3	Fuel injector needs to be flushed	Fuel injector need not be flushed	
		5	continuously- to prevent formation of	r der injector need net de frashed	
			air bubble.		
		4	1 or 2 Fuel injectors are used	Fuel injectors are equal to the number	
				of cylinders	
		5	TBI is comparatively low pressure	PFI is comparatively high pressure	
			injection	injection (differential pressure	
			(differential pressure = 0.7 to 1 bar)	= 2 to 3 5bar	Anv
		6	Cheaper fuel pump is sufficient to	Costly fuel pump is required to generate	Six
			generate the required low pressure	the required pressure	Points,
		7	Mixture mal-distribution may occur	All cylinders receive equal quantity and	Each
			initiate mar distribution may been	quality of air: fuel mixture	Correct
		8	Less accurate fuel injection control	More accurate fuel injection control	Point
		U U	gives moderate fuel economy	is obtained. Therefore increased fuel	01 Mank
			gives moderate ruler economy	economy is obtained	wiark
		9	This is a cheap system.	This is costly system.	
		10	Exhaust emission is above the	Very low exhaust emission is achieved	
			permissible emission norms.	to meet the strict emission norms.	
		11	Moderate throttle response as the fuel	Better throttle response as fuel is	
			is injected at the throttle body and	injected on hot back side of intake	
			longer length of travel for fuel to	valve and shorter length of travel for	
			enter the engine cylinder	fuel – to enter the engine cylinder	
		12	Lower power output due to lower	Hither power output due to low	
			volumetric efficiency caused by	resistance at intake manifold and higher	
			bulky injector body at the throttle	volumetric efficiency.	
			body.		
		4	+	+1	
	b	Describ	e the idle speed control function of an e	lectronic control module with neat sketch.	06
	Ans.	Idle Sp	eed Control System as Output Fund	ction of ECM: While the engine is being	
		started,	or operated, the logic module of Electr	onic Control Module (ECM) will signal the	
		Stepper	motor of Idle Speed Control (ISC) val	lve to provide the easy starting without the	
			When the engine is cold the logic mod	fule will position the AIS motor to provide	
		1.	the correct cold fast idle speed. The IS	C valve motor allows more air to flow past	
			the motor plunger into the intake manif	old to increase the idle speed. This air flow	Description
		1	bypasses the throttle.	1	04
		2. 7	The ISC valve motor will provide the co	orrect idle speed when the air conditioner is	Marks
		(on and required air: fuel mixture when the	he engine is decelerating.	

c	Describe three engine modifications to be done to reduce SI engine Emission.	06
Ans.	Engine Modifications to be Done to reduce SI Engine Emission are:	
	1. Use of leaner air-fuel ratios: The carburettor may be modified to provide relatively lean air fuel mixtures during idling and cruise operation. With this modification, idle speed needs to be increased to prevent stalling and rough idle. Fuel distribution is improved by better manifold design, Inlet air heating, raising of coolant temperature and use of electronic fuel injection system.	
	2. Retarding Ignition timing: The controls are designed to retard the spark timing at idle and providing normal spark advance during acceleration and cruising. Retarding spark reduces NOX. Emission. It also reduces HC emission.	
	3. Modification of combustion chamber: Modification in combustion chamber is attempted to avoid flame quenching zones, resulting in HC emission. This includes reducing surface to volume ratio, reduced squish area, reduced deal space around piston ring and reduced distance of the top piston ring from the top of the piston.	An Thr Corr Meth 02
	4. Lower compression ratio: The lower compression ratio reduces the quenching effect by reducing quenching area reducing HC. It also reduces NOX. Emission. Reducing compression ratio results in some loss of power and fuel economy.	Ma Ead
	5. Reduced valve overlap: Increased valve overlap allows some mixture to escape directly to increase emission level. This can be controlled by reducing valve overlap.	
	6. Alterations in induction system: The supply of designed air fuel ratio to all cylinders under all operating conditions can be affected by alterations in induction. This includes inlet air heating, use of carburettor with closer tolerances and using special type of carburettors. This also includes fuel injection in manifold.	