Maharashtra State Board of Technical Education (MSBTE)

I – Scheme I – Semester Course Curriculum

Course Title: **Basic Science** (Common) (Course Code:)

Diploma programme in which this course is offered	Semester in which offered		
Common to all	First		

1. **RATIONALE**

Diploma engineers (also called technologists) have to deal with various materials and machines. This course is designed with some fundamental information to help the technologists apply the basic concepts and principles of physics and chemistry to solve broad-based engineering problems. The study of basic principles of sciences and the concepts related to various materials such as metals, alloys, inorganic salts, polymers, lubricants, paints, varnishes, adhesives, heat, electricity, magnetism, optics, semiconductors and others will help in understanding the technology courses where emphasis is on the applications of these in different technology applications.

2. COMPETENCY

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Solve broad-based engineering problems applying principles of physics and chemistry.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following *industry oriented* COs associated with the above mentioned competency:

- a. Estimate errors in measurement of physical quantities.
- b. Apply the principles of electricity and magnetism to solve engineering problems.
- c. Use the basic principles of heat and optics in related engineering applications.
- d. Apply the catalysis process in industries.
- e. Use corrosion preventive measures in industry.
- f. Use relevant engineering materials in industry.

4. TEACHING AND EXAMINATION SCHEME

Teac	ching Sc	heme	Tota	al Credits		Examination Scheme				
(.	In Hour	·s)		(L+T+P)		Theory N	Theory Marks Practical Marks			Total Marks
L	Т	Р	С			ESE	PA	ESE	PA	
4		4	Applied	Physics	2+2	35	15*	25	25	200
4	-	+	Science	Chemistry	2+2	35	15*	25	25	

(*): Under the theory PA, out of 30 marks, 10 marks are for micro-project assessment (5 marks each for Physics and Chemistry) to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain LOs required for the attainment of the COs.

NITTTR Bhopal-MSBTE/I - Scheme/17

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment

5. **COURSE MAP** (with sample COs, Learning Outcomes i.e.LOs and topics)

This course map illustrates an overview of the flow and linkages of the topics at various levels of outcomes (details in subsequent sections) to be attained by the student by the end of the course, in all domains of learning in terms of the industry/employer identified competency depicted at the centre of this map.

Figure 1 - Course Map

6. SUGGESTED PRACTICALS/ EXERCISES

The practicals/exercises/tutorials in this section are psychomotor domain LOs (i.e.subcomponents of the COs), to be developed and assessed in the student to lead to the attainment of the competency.

S.	Practical Exercises	Unit	Approx.
No.	(Learning Outcomes in Psychomotor Domain)	No.	Hrs. Required
	Physics		1
1	Use Vernier caliper to :	Ι	02*
	(i)Measure dimensions of given objects.		
	(ii) Measure the dimensions of objects of known dimensions.		
	(iii) Estimate the errors in measurement.	-	. . .
2	Use Screw gauge to:	Ι	02*
	(i)Measure dimensions of given objects.		
	(ii) Measure the dimensions of objects of known dimensions.(iii) Estimate the errors in measurement.		
3	Use Spherometer to measure radius of curvature of any curved	Ι	02
5	surface.	1	02
4	Use Ohm's law to solve circuit problems.	II	02*
5	Determine the specific resistance of given wire.	II	02*
6	Use the principle of series resistance in solving electrical	II	02
	engineering problems.		
7	Use the principle of parallel resistance in solving electrical	II	02
	engineering problems.		
8	Use magnetic compass to draw the magnetic lines of forces of	II	02*
	magnet of different shapes.		
9	Use magnetic compass to determine the neutral points when	Π	02
	(i) North pole of bar magnets points towards the north pole of		
	earth.		
	(ii) South pole of bar magnets points towards the north pole of		
10	earth. Use p-n junction diode to draw forward bias and reverse bias I-V	II	02*
10	characteristics.	11	02.
11	Determine forbidden energy band gap in semiconductors.	II	02
12	Determine the pressure-volume relation using Boyle's law.	III	02
13	Use Joule's calorimeter to determine Joule's mechanical equivalent	III	02*
	of heat.		-
14	Use Searle's thermal conductivity apparatus to find co-efficient of	III	02*
	thermal conductivity of a given material.		
15	Use pin method to determine refractive index of prism.	III	02*
16	Determine the refractive index of glass slab using TIR	III	02
	phenomenon.		
	Chemistry		
17	Identify cation in given ionic solutions.	IV	02*
18	Identify anion in given ionic solutions.	IV	02
19	Determine the percentage of iron in the given sample using redox	IV, V	02*
20	titration. Prepare the corrosive medium for Aluminium at different	V V	02
20	temperature.	v	02
21	Determine the rate of corrosion on different temperatures for	V	02*
<i>2</i> 1	Aluminium.		02
22	Determine the electrode potential of Copper metal.	V	02
23	Determine the electrode potential of Iron metal.	V	02*

S.	Practical Exercises	Unit	Approx.
No.	(Learning Outcomes in Psychomotor Domain)	No.	Hrs. Required
24	Determine the voltage generated from chemical reaction using Daniel Cell.	V	02
25	Determine the pH value of given solution using pH meter and universal indicator.	V	02*
26	Determine electrochemical equivalent of Cu metal using Faraday's first law.	V	02
27	Determine equivalent weight of metal using Faraday's second law.	V	02
28	Determine the effect of temperature on viscosity for given lubricating oil using Redwood viscometer-I.	VI	02*
29	Determine the steam emulsification number of given lubricating oil.	VI	02
30	Determine the flash and fire point of given lubricating oil using Cleveland open cup apparatus.	VI	02*
31	Determine the flash point of given lubricating oil using Abel's closed cup apparatus.	VI	02*
32	Determine thinner content in oil paint.	VI	02*
	Total		64

<u>Note</u>

- *i.* A suggestive list of practical LOs is given in the above table, more such practical LOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical LOs/tutorials need to be performed, out of which, the practicals marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- ii. Hence, the 'Process' and 'Product' related skills associated with each LO of the laboratory/workshop/field work are to be assessed according to a suggested sample given below:

S. No.	Performance Indicators	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and Recording	10
5	Interpretation of result and Conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
	Total	100

Additionally, the following affective domain LOs (social skills/attitudes), are also important constituents of the competency which can be best developed through the above mentioned laboratory/field based experiences:

- a. Follow safety practices.
- b. Practice good housekeeping.
- c. Demonstrate working as a leader/a team member.
- d. Maintain tools and equipment.
- e. Follow ethical practices.

The development of the attitude related LOs of Krathwohl's 'Affective Domain Taxonomy', the achievement level may reach:

- 'Valuing Level' in 1st year
 'Organising Level' in 2nd year and rd
- 'Characterising Level' in 3rd year. •

MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED 7.

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

S.		Exp.
No.	Equipment Name with Broad Specifications	S.No.
1	Vernier Calipers: Range: 0-150mm, Resolution: 0.1mm	1
2	Micrometer screw gauge: Range: 0-25mm, Resolution:0.01mm,	2
	Accuracy: ± 0.02 mm or better	
3	Spherometer: range:-10 to $+10$ mm, LC = 0.01 mm	3
4	Digital multimeter: 3 ¹ / ₂ digit display, 9999 counts, digital multimeter	4, 5, 6, 7,
	measures: V _{ac} , V _{dc} (1000V max), A _{dc} , A _{ac} (10 amp max), Hz,	21, 22, 23
	Resistance ($0-100 \text{ M}\Omega$), Capacitance and Temperature	
5	Resistance Box: 4 decade ranges from 1 ohm to $1K\Omega$, accuracy 0.1 % - 1	4,5,6,7
	%	
6	Battery eliminator: 0- 12V, 2A	6,7, 25, 26
7	Boyle's apparatus: U tube manometer, digital barometer	12
8	Joule's calorimeter: well insulated 'mechanical equivalent of heat	13
	apparatus' in wooden box, digital/analog thermometer	
9	Searle's thermal conductivity apparatus : Cylindrical copper, aluminum,	14
	brass, glass and iron rod, steam chamber, digital / analogue thermometer,	
	arrangement for fitting tubes and thermometer	
10	Forbidden energy band gap set up: Oven : temperature range up to 100 ^o C,	11
	thermometer, micro ammeter, Ge diode	
11	pH meter reading up to pH14; ambient temp40 to 70° C.; pH/mV	24
	resolution:13 bit	
12	Electronic balance, with the scale range of 0.001g to 500gm pan size 100	13,17, 19,
	mm; response time 3-5 sec.: power requirement 90-250 V, 10 watt	25, 26, 31
13	Electric oven inner size 18''x18''x18''; temperature range 100 to 250° C.	31
	with the capacity of 40 lt.	
14	Ammeter 0-2 amp	25,26
15	Redwood viscometer-I	27
16	Cleveland open cup apparatus	29
17	Abel's close cup apparatus	30

8. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics should be taught and assessed in order to develop LOs in cognitive domain for achieving the COs to attain the identified competency:

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
	Phy	sics
Unit – I	1a. Describe the concept of given	1.1 Unit, physical quantities: fundamental

Unit	Major Learning Outcomes	Topics and Sub-topics
Units and Measurem ents	 (in cognitive domain) physical quantities with relevant unit of measurement. 1b. Explain various systems of units and its need for the measurement of the given physical quantities. 1c. Determine the dimensions of the given physical quantities. 1d. State the error in the given measurement with justification. 	 and derived quantities and their units 1.2 Systems of unit: CGS, MKS, FPS and SI 1.3 Dimensions, dimensional formula 1.4 Errors, types of errors: instrumental, systematic and random error, estimation of errors: absolute, relative and percentage error, significant figures
Unit– II Electricity, Magnetism and Semicondu ctors	 2a. Calculate electric field, potential and potential difference of the given static charge. 2b. Describe the concept of given magnetic intensity and flux with relevant units. 2c. Explain the heating effect of the given electric current. 2d. Apply laws of series and parallel combination in the given electric circuits. 2e. Distinguish the given conductors, semiconductors and insulators on the basis of energy bands. 2f. Explain the I-V characteristics and applications of the given p-n junction diodes. 	 2.1 Concept of charge, Coulomb's inverse square law, Electric field, Electric field intensity, potential and potential difference 2.2 Magnetic field and magnetic field intensity and its units, magnetic lines of force, magnetic flux 2.3 Electric current, Ohm's law, specific resistance, laws of series and parallel combination of resistance, heating effecting of electric current 2.4 Conductors, Insulators and Semiconductors, Energy bands, intrinsic and extrinsic semiconductors 2.5 p-n junction diode, I-V characteristics of p-n junction, applications of p-n junction diode
Unit– III Heat and Optics	 3a. Convert the given temperature in different temperature scales. 3b. Describe the properties of the given good and bad conductors of heat. 3c. Relate the characteristics of the three gas laws. 3d. Determine the relation between specific heats for the given materials. 3e. Distinguish the phenomena of total internal reflection for 	 3.1 Heat, temperature, temperature scales 3.2 Modes of transfer of heat, good and bad conductors of heat, law of thermal conductivity 3.3 Boyle's law, Charle's law, Gay Lussac's law, perfect gas equation 3.4 Specific heat of gas at constant pressure and volume (C_p and C_V), ratio of specific heats 3.5 Reflection , refraction, laws of refraction, total internal reflection
	the given mediums. 3f. Describe light propagation in	3.6 Optical fiber: Principle, construction and path of light through optical fiber,

Unit	N	Aajor Learning Outcomes		Topics and Sub-topics
		(in cognitive domain)		
		the given type of optical		applications of optical fibers.
		fiber.		
		Chen	1	*
Unit-IV		Explain the properties of	4.1	Electronic theory of valency, chemical
Chemical		given material based on the		bonds: types and characteristics,
bonding		bond formation.		electrovalent bond, covalent bond,
and		Describe the molecular		coordinate bond, hydrogen bond,
Catalysis		structure of given solid,		metallic bond, metallic properties,
		liquid and gases.		intermolecular force of attraction.
		Describe the crystalstructure	4.2	Molecular arrangement in solid, liquid
		of the given solids.	1.2	and gases.
		Select the relevant catalyst	4.3	2
		for given application.		amorphous solid, properties of metallic
				solids-, unit cell- of simple cubic, body
				centre cubic, face centre cubic,
			1 1	hexagonal close pack crystals. Catalysis: Types of catalysis, Catalyst,
			4.4	Types of Catalyst, Positive Catalyst,
				Negative Catalyst, Auto-catalyst,
				Catalytic Promoter and Catalytic
				inhibitor, Industrial Application of
				Catalyst
				Cuturyst
Unit –V	5a.	Describe the phenomenon of	5.1	Corrosion: Types of corrosion- Dry
Metal		the given type of corrosion		corrosion, Wet corrosion. Oxidation
Corrosion,		and its prevention.		corrosion (Atmospheric corrosion due to
its		Identify the different factors		oxygen gas), mechanism, Types of
prevention		affecting rate of corrosion for		oxide film, Wet corrosion mechanism
and		the given type of material.		(Hydrogen evolution in acidic medium)
Electroche	5c.	Select the protective	5.2	Concentration cell corrosion -oxygen
mistry		measures to prevent the		absorption mechanism in neutral or
		corrosion in the given		alkaline medium, Pitting corrosion,
		corrosion in the given corrosive medium.		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion.
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment,
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning),
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic
			5.3	alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using
		corrosive medium.		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys
	5d.	corrosive medium. Differentiate the salient		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys Electrolyte- strong and weak, Non-
	5d.	corrosive medium. Differentiate the salient features of the given		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys Electrolyte- strong and weak, Non- Electrolyte, Electrolytic cell,
	5d.	corrosive medium. Differentiate the salient features of the given electrolytic cell and		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys Electrolyte- strong and weak, Non- Electrolyte, Electrolytic cell, Electrochemical cell. Cathode, Anode,
	5d.	corrosive medium. Differentiate the salient features of the given electrolytic cell and electrochemical cell.		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys Electrolyte- strong and weak, Non- Electrolyte, Electrolytic cell, Electrochemical cell. Cathode, Anode, Electrode potential- oxidation and
	5d. 5e.	corrosive medium. Differentiate the salient features of the given electrolytic cell and		alkaline medium, Pitting corrosion, Waterline corrosion, Crevice corrosion. Factors affecting the rate of corrosion control: Modification of environment, Use of protective coatings- coating of less active metal like Tin (Tinning), coating of more active metal like Zinc (Galvanizing), Anodic and cathodic protection, Choice of material-using pure metal and using metal alloys Electrolyte- strong and weak, Non- Electrolyte, Electrolytic cell, Electrochemical cell. Cathode, Anode,

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	Topics and Sub-topics
	 5f. Describe the process of electrolysis for the given electrolyte. 5g. Describe the process of electroplating of the given material. 	5.6 Primary cell and secondary cell Electrolysis- Mechanism, Electroplating and electro-refining of copper.
Unit-VI Paints, Varnishes, Insulators, Polymer, Adhesives and Lubricants	 6a. Identify the ingredients of the given paints. 6b. Differentiate salient properties of the given paint and varnish. 6c. Describe the properties of insulating materials for the given application. 	 6.1 Paints: Purpose of applying paint, Characteristics of paints, Ingredients of paints, Function and Examples of each ingredients 6.2 Varnish: Types, Difference between paints and varnishes 6.3 Insulators: Characteristics, Classification, Properties and Application of Glass wool, Thermo Cole
	 6d. Differentiate the given types of structural polymers. 6e. Describe the polymerization process of the given polymer. 6f. Explain the properties and uses of the given polymer, elastomer and adhesive. 6g. Describe the application of relevant adhesives required for the given material. 6h. Explain the properties of given type of lubricants. 	 6.4 Polymer and Monomer, Classification: on the basis of Molecular structure, on the basis of monomers (homo polymer and copolymer), on the basis of Thermal behavior(Thermoplastics and Thermosetting) 6.5 Types Polymerization Reaction, Addition Polymerization, Condensation Polymerization, Synthesis, properties and application of Polyethylene, Polyvinyl chloride, Teflon. Polystyrene, Phenol formaldehyde, Epoxy Resin 6.6 Adhesives: Characteristics, Classification and their uses 6.7 Lubricants: Classification, properties and applications

Note: To attain the COs and competency, above listed Learning Outcomes (LOs) need to be undertaken to achieve the 'Application Level' of Bloom's 'Cognitive Domain Taxonomy'.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
	Physics						
Ι	Units and Measurements	06	02	03	-	05	
II	Electricity, Magnetism and	14	03	05	08	16	
	Semiconductors						
III	Heat and Optics	12	03	05	06	14	
	Chemistry						

Unit	it Unit Title Teaching Distribution of Theory					Marks	
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
IV	Chemical bonding and Catalysis	08	02	03	04	09	
V	Metal Corrosion, prevention and	12	03	04	05	12	
	Electrochemistry						
VI	Paints, Varnishes, Insulators,	12	03	05	06	14	
	Polymer Adhesives and Lubricants						
	Total	64	16	25	29	70	

Legends: R=Remember, U=Understand, A=Apply and above (Bloom's Revised taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of LOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course:

- a. Market survey of different resins and compare the following points.
 - i. Structure
 - ii. Properties
 - iii. Applications.
- b. Library survey regarding engineering material used in different industries.
- c. Power point presentation or animation for showing different types of bonds or molecules.
- d. Seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b. 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the LOs/COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No.10, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- e. Guide student(s) in undertaking micro-projects.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. S/he ought to submit it by the end of the semester to develop the industry oriented COs. Each micro-project should encompass two or more COs which are in fact, an integration of practicals, cognitive domain and affective domain LOs. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each student will have to maintain dated work diary consisting of

individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course.

In the first four semesters, the micro-project could be group-based. However, in higher semesters, it should be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. A suggestive list is given here. Similar micro-projects could be added by the concerned faculty:

- a. **Optical Fiber and TIR**: Prepare models by using water and diode laser to demonstrate total internal reflection and the working of optical fiber.
- b. **Conductivity**: Collect different materials such as metal, plastics, glass etc. and prepare models to differentiate between good and bad conductor within collected materials.
- c. **Gas laws:** Prepare models to demonstrate Boyle's laws, Charle's Law and Gay Lussac's law using house hold materials.
- d. **Battery and Cell: C**ollect wastage material from lab and household and prepare working model of cell.
- e. Adhesives: Prepare model to demonstrate the applications of various adhesives.
- f. **Polymer:** Collect the samples of different polymers and list their uses.
- g. Series and parallel resistances: Prepare models for combination of series and parallel resistances using bulbs/ LED.
- h. **Systems and units:** Prepare chart on comparison of systems of units for different physical quantities.
- i. **Magnetic flux:** Prepare models to demonstrate magnetic lines of lines of forces of different types of magnets.
- j. **Dimensional analysis:** Prepare chart on dimensions of fundamental and derived physical quantities and highlights the applications of dimensional analysis.
- k. **Types of bonds:** Prepare chart and models displaying different types of bonds with examples.
- 1. **Ionization:** Prepare chart displaying ionization phenomenon.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
1	Physics Textbook	Narlikar, J. V.; Joshi, A.	National Council of Education
	Part I - Class XI	W.; Mathur, Anuradha; <i>et al</i>	Research and Training, New Delhi, 2010, ISBN : 8174505083
2	Physics Textbook	Narlikar, J. V.; Joshi, A.	National Council of Education
	Part II - Class XI	W.; Mathur, Anuradha;	Research and Training, New Delhi,
		et al	2015, ISBN : 8174505660
3	Physics Textbook	Narlikar, J.V.; Joshi, A.	National Council of Education
	Part I - Class XII	W.; Ghatak A.K. et al	Research and Training, New Delhi,
			2013, ISBN : 8174506314
4	Physics Textbook	Narlikar, J.V.; Joshi, A.	National Council of Education
	Part II - Class XII	W.; Ghatak A.K. et al	Research and Training, New Delhi,
			2013, ISBN : 8174506713
5	Fundamentals of	Haliday, David;	John Wiley and sons, Hoboken,
	Physics	Resnik, Robert and	USA, 2014 ISBN : 812650823X
		Walker, Jearl	

S. No.	Title of Book	Author	Publication
6	Engineering	Jain and Jain	Dhanpat Rai and sons; New Delhi,
	Chemistry		2015, ISBN : 9352160002
7	Engineering	Dara, S. S.	S.Chand. Publication, New Delhi,
	Chemistry		2013, ISBN: 8121997658
8	Fundamental of	Bagotsky,V.S.	Wiley International N. J.,2005,
	electrochemistry		ISBN: 9780471700586

14. SOFTWARE/LEARNING WEBSITES

- a. http://nptel.ac.in/course.php?disciplineId=115
- b. http://nptel.ac.in/course.php?disciplineId=104
- c. http://hperphysics.phy-astr.gsu.edu/hbase/hph.html
- d. www.physicsclassroom.com
- e. www.physics.org
- f. www.fearofphysics.com
- g. www.sciencejoywagon.com/physicszone
- h. www.science.howstuffworks.com
- i. https://phet.colorado.edu
- j. www.chemistryteaching.com
- k. www.visionlearning.com
- l. www.chem1.com
- m. www.onlinelibrary.wiley.com
- n. www.rsc.org
- o. www.chemcollective.org