17426

21314 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any <u>SIX</u> of the following:

- 12
- i) Define partial pressure. Write the unit of pressure in SI.
- ii) Define compressible fluid.
- iii) Define critical velocity.
- iv) Define fanning's friction factor.
- v) Define equivalent length of pipe fittings.
- vi) Give the application of diaphragm pump.
- vii) Give the application of steam jet ejector in chemical industry.

17426		[2]	
			Marks
b)	Atte	empt any <u>TWO</u> of the following:	8
	i)	What is the difference between velocity calculated using a pitot tube and venturimeter. Give the formula to calculated velocity using a pitot tube and venturimeter.	•

- ii) Draw the diagram of a non return valve fitted on a vertical pipe. Give the application of non return valve. (N.R.V.)
- iii) What is priming of a centrifugal pump? How is it done?

2. Attempt any **FOUR** of the following:

16

- a) Draw the diagram of a inclined leg manometer and mark the parts.
- b) Write the Hagen Poiseuille's equation and explain the terms involved in it.
- c) Explain construction and working of rupture disc.
- d) Draw the characteristics curve of centrifugal pump.
- e) What is friction factor chart?
- f) Compare variable head meter and variable area meter based on following points:
 - i) Area of flow
 - ii) Pressure drop
 - iii) Measurement of flow rate
 - iv) Cost.

17426 [3]

3.		Attempt any FOUR of the following:	16	
	a)	Derive the equation for calculating pressure drop using a u-tube manometer.		
	b)	Draw the diagram of a gate valve and mark the parts.		
	c)	Give the difference between single acting and double acting reciprocating pumps based on:		
		i) Number of suction stroke and delivery stroke		
		ii) Contact between piston and pumping liquid.		
d) e)		Explain the working of reciprocating compressor.		
		Define Newtonian and Non Newtonia fluid.		
	f)	Draw the diagram of a centrifugal pump and mark the parts.		
4.		Attempt any FOUR of the following:		
	a)	Draw the diagram of:		
		i) Tee		
		ii) Plug.		
		State its application		
b)	b)	Explain Reynolds experiment with the help of a diagram.		
	c)	Give the range of pressure developed by fan, blower and compressor.		
	d)	How will you calibrate a given rotameter?		
	e)	Write the formula to calculate frictional loss due to sudden contraction and explain the terms involved in it.		
	f)	Calculate the pressure developed by a 8 cm column of:		
		i) Water		
		ii) Liquid of specific gravity 0.9		

Marks

5. Attempt any <u>TWO</u> of the following:

16

- a) Liquid is to be pumped at a rate of 0.5 m³/s through a 75 mm diameter pipe line for a length of 100 m. Density of the liquid is 1100 kg/m³ and viscosity is 0.003 Pa.S. Calculate the pressure drop in the pipe.
- b) State and derive equation of continuity. Water is flowing through a 2 cm diameter pipe at a velocity of 8 cm/s. It enters a large pipe of diameter 10 cm. Find the velocity of water in the large diameter pipe.
- c) Derive the equation to calculate volumetric flow rate using a venturimeter.

6. Attempt any <u>TWO</u> of the following:

16

- a) What is cavitation? Give its draw back. Derive the formula to calculate NPSH.
- b) Sulphuric acid is to be pumped at a rate of 4 kg/s through a 50 mm diameter pipe for a length of 850 m and then raised vertically to a height of 20 m. If the efficiency of the pump is 60%, calculate the power required by the pump.

Density of sulphuric acid - 1650 kg/m³.

Viscosity of sulphuric acid - 0.0086 pa.s.

c) Explain the working of steam jet ejector.