

Winter– 2015 Examinations Model Answer

Page 1 of 29

Important suggestions to examiners:

Subject Code: 17318

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A	Attempt any SIX of the following : 12 Marks		
a)	Define peak factor and form factor for a sinusoidal quantity.		
Ans:	1. Peak factor for a sinusoidal quantity:(Each Definition : 1 Mark)		
	It is defined as the ratio of Maximum value to the RMS value.		
	2. Form factor for a sinusoidal quantity:		
	It is defined as the ratio of RMS value to the Average value of an alternating quantity		
b)	State Fleming's Right Hand Rule.		
Ans:	Fleming's Right Hand Rule: (2 Mark)		
	Arrange three fingers of right hand mutually perpendicular to each other, if the first figure		
	Arrange under hingers of fight hand indudary perpendicular to each other, if the first figure		
	indicates the direction of flux, thumb indicates the direction of motion of the conductor, then the		
	middle finger will point out the direction of inducted current.		
c)	List the various losses that occur in a transformer.		
Ans:	The various losses that occur in a transformer:(1 Mark each)		
	1) Copper losses		
	2) Core or Iron losses:		
	a) Hysteresis loss		
	b) Eddy current loss		

	Winter-2015 Examinations	
S	ubject Code: 17318 <u>Model Answer</u>	Page 2 of 29
d)	Why transformer rating is in kVA and not in kW ? Explain.	
	Reason & explanation for transformer rating is in kVA and not in kW	(2 Mark)
	We know that copper loss in a transformer dependence	ds on current and iron
Ans:	loss depends on voltage. Therefore, the total loss in a transformer depen	ids on the volt-ampere
	product only and not on the phase angle between voltage and current i.e	e., it is independent of
	load power factor. For this reason, the rating of a transformer is in KVA	and KW.
e)	List two applications of universal motor.	
Ans:	Application of Universal Motor: (Any Two application expects) 1) Mixer	ted : 1 Mark each)
	2) Food processor	
	3) Heavy duty machine tools	
	4) Grinder	
	5) Vacuum cleaners	
	6) Refrigerators	
	7) Driving sewing machines	
	8) Electric Shavers	
	9) Hair dryers	
	10) Small Fans	
	11) Cloth washing machine	
	12) portable tools like blowers drilling machine polishers etc.	
f)	State necessity of earthing.	
Ans:	Necessity of Earthing: (Any two point expect	cted: 1 Mark each)
	Earthing is provided to protect human from shocks due to leakage cu	rrent. OR
	> Earthing is to ensure safety or Protection of electrical equipment and	Human by
	discharging the electrical leakage current to the earth. OR	
	> Earthing provides protection to the electrical motors and appliances.	due to leakage
	current.	
	For star connected load, state numerical relationship between: (i) Lin	e current and Phase
g)	current. (ii) Line voltage and Phase voltage.	
	i) The relation between line current and phase current in star connected	l load.
	$I_{r} = I_{rh}$	(1 Mark)
Ans:	ii) The relation between line voltage and phase voltage in star connected	Load
	$V_{r} = \sqrt{3} V_{r}$	(1 Mark)
	L $V = Ph$	(/

	Winte	r- 2015 Examinations	
S	ubject Code: 17318	Model Answer Page 3 of 29	
h)	Define: Phase sequence and unbalance	ed load.	
Ans:	1. Phase sequence:	(1 Mark)	
	The phase sequence is defin	ed as the sequence in which all the phases attain there	
	maximum positive values.		
	2. Unbalanced load :	(1 Mark)	
	In unbalanced load The respec	ive Magnitude and phase angle currents are not identical in	
	three phases. OR		
	Impedances of one or more ph	ases are different from other phases. (Z1, Z2, & Z3 are not	
	identical simultaneously)	OR	
	Magnitude and phase angle of	load impedance are not identical.	
Q.1 B)	Attempt any TWO of the following:	08 Marks	
a)	With the help of waveforms and phasor diagrams show the phase relationship between		
Ans	voltage and current in pure inductive Pure inductance circuit : (Waveforn	and pure capacitive circuits. Phasor Diagram and relationship between voltage	
1 11151	and current : 2 Mark)	, - moor - mgrund and - one of the sector of the sector	
	Waveform.	Phasor Diagram •	
	$v - V_m \sin \omega t$ $i = I_m \sin (\omega t - \pi/t)$ $- \frac{\pi}{2}$	2) V _L .	
	1. Equation for voltage V= $V_m \sin \omega$ 2. Equation for current I = $I_m \sin (\omega)$) or $I_m \sin (\omega t - 90^{\circ})$	

Winter-2015 Examinations **Model Answer** Page 7 of 29 Subject Code: 17318 c) Compare core type and shell type single phase transformer (any four points). (Any Four points expected each:1 Marks) Ans: S.No **Core Type Transformer Shell Type Transformer** 1. VE 2. The Winding surround the core The core surround the windings Magnetic Flux has only one Magnetic Flux is distributed into 2 3. continuous path paths Suitable for high voltage & less 4. Suitable for less voltage & high output output Easy for repairs 5. Difficult for repairs Less in Weight More in Weight 6. 7. It has one window opening It has two windows opening Draw a delta connection for 3-phase power supply and show line current, line voltage, phase current and phase voltage on it and state the relation between currents and voltages (phase **d**) values and line values) i) Draw the connection diagram: (Diagram : 2 Marks& equation: 2 Mark) Ans: 3 phase supply OR equivalent diagram 1. Line voltages = Phase voltages 2. Line currents = I_R , I_Y , and I_B . 3. Phase currents = I_{RY} , I_{YB} , and I_{BR} . 4. $V_{\text{Line}} = V_{\text{Phase}}$, 5. $I_{\text{Line}} = \sqrt{3} I_{\text{Phase}}$

S	Winter- 2015 ExaminationsSubject Code: 17318Model AnswerPage 8 of 29
e)	Define : (i) RMS value (ii) Instantaneous value (iii) Angular frequency (iv) Phase angle with reference to AC quantities
Ans:	(i) RMS value : (1 Mark) The RMS value of an AC is equal to the steady state or DC that is required to produce the same amount of heat as produced by AC provided that the resistance and time for which these currents flow are identical.
	(ii) Instantaneous value: (1 Mark) The Value of AC quantity at any particular time instant is called as Instantaneous value.
	(iii) Angular Frequency:(1 Mark)The change in angle in radian pre seconds
	It is denoted by ω
	(iv) Phase Angle: (1 Mark)
	It is the angle between current and voltage.
f)	Explain the resonance in R-L-C series circuit
Ans:	Explanation of resonance in R-L-C series circuit : (4 Marks)
	The resonance of a series RLC circuit occurs when the inductive and capacitive
	reactances are equal in magnitude
	OR
	Resonance is the phenomenon in AC circuit in which circuit exhibits unity power
	factor or applied voltage and resulting current are in phase with each other.
	\rightarrow Under series resonance condition $X_1 = X_C$.
	> Power factor is unity or 1 i.e. $\cos \Phi = 1$
	\blacktriangleright Impedance (Z) = resistance (R)
	Current is maximum
Q.3	Attempt any FOUR of the following : 16 Marks
<u>a)</u>	Explain the generation of single phase AC by an elementary alternator.
Ans:	(Figure -2 Marks & Explanations- 2 Marks)
	or equivalent figure

S	wubject Code: 17318	inter– 2015 Examinations <u>Model Answer</u>	Page 9 of 29
	Imagine the coil ABCD successive positions in the field in it which is proportional to th When the plane of the co flux linked with the coil is max minimum emf is induced in the	to be rotating in clockwise direction d the flux linked with it changes/cu he rate of change of flux linked. il is at right angle to line of fluxes kimum but rate of change of flux line e coil at this position shown in figu	on, as the coil assumes ats. Hence an EMF induced i.e. when its position 1 then nked is minimum. Hence are.
	The coil plane is horizon at this stage the flux linked wit maximum. Hence maximum e From 90 ^o C to 180 ^o C the change of flux linkage decrease 5 of the coil it is reduce to zero The direction of induced In the next half revolution emf is similar to those in the fi	tal i.e. parallel to lines of flux i.e. h the coil is minimum but rate of comf is induced in the coil at this po flux linked with the coil gradually es. Hence the induced emf decreas o value emf can be found by Fleming's rig n i.e. from 180°C to 360°C the var rst half revolution but in opposite	at $\theta = 90^{\circ}$, C at position 3, change of flux linked is sition shown in figure. θ increases but the rate of the gradually till in position ght hand rule. iation in the magnitude of direction.
b)	Draw a R-L-C series circuit and p	hasor diagram. Also write equat	ions.
Ans:	(R-L-C series circuit- 2 Marks, l	Phasor diagram-1Mark, Equatio	ons-1Mark)
	R-L-C Series circuit with phaso	r diagram :-	
		or Equivalent fig.	
	Thasor Diagram. (Any one phas	or magram expected)	
	i) $X_L > X_C$ (lagging) Resultant $(V_L - V_C)$ V_R V_R Current lags	ii) $X_C > X_L$ (leading) $V_R \downarrow$ $(V_C - V_L)$ Resultant	iii) $X_L = X_C (UPF)$ $\downarrow V_R \rightarrow V_R \approx 10 \text{ in phase with } L$

		Winter– 2015 Examinations	
S	ubject Code: 17318	Model Answer	Page 10 of 29
	Equations for R-L-C	series circuit: (Any Two equation expected	ed)
	$X_{C} = \frac{1}{2 - c}$		
	$2\pi f$	С	
	$X_L=2 \pi f I$	L	
	Im nedanc	$c_{R} Z = \sqrt{(R)^{2} + (X - X_{C})^{2}}$	
	ini pedane	V = V = V (R) + (R) (R)	
		$I = \frac{V}{Z}$	
	Ce	$\cos\phi = \frac{R}{2}$	
		Z	
	For X_c > X_L:	tion for voltage $V = V_{-}$ sin of	
	2 Equat	tion for current $I = I_{m} \sin(\omega t + \omega)$	
	2. Equal	$\mathbf{W} = \mathbf{W}$	
	For 1. Equat	$\mathbf{X}_{\mathbf{c}} < \mathbf{X}_{\mathbf{L}}$ tion for voltage V= V _m sin ωt	
	2. Equat	tion for current $I = I_m \sin(\omega t - \varphi)$	
	For X _{L=} X _c :		
	1. Equat	ion for voltage $V = V_m \sin \omega t$	
	2. Equat	ion for current $I = I_m \sin \omega t$	
	A coil has a resistance	of 3 ohm and inductance of 0.012739 Henr	y and is connected across
c)	230 volts, 50 Hz AC su	pply. Calculate : (i) Inductive reactance (ii	i) Impedance (iii) Current
Ans:	Im <i>pedance</i> per	phase $Z_{\perp} = \sqrt{R^2 + (X_{\perp})^2}$	
	Step-1: To Find Ind	$\frac{1}{p_h} = \frac{1}{p_h} = \frac{1}$	
		$X_L = 2\pi f L, X_L = 2 \times \pi \times 50 \times 0.012739$	
		$X_L = 4.00207 \approx 4 \ \Omega$	(1 Mark)
	Step-2: To Find Im	pedance =	
	Im pedance Z	$Z = \sqrt{3^2 + (4.00207)^2}$	
	Im <i>pedance</i> Z =	$=\sqrt{3^2+4.00207^2}$	
	Im pedance Z	$= 5.00166 \ \Omega$	(1 Mark)
	Step-3: To Find Cu	irrent=	
	1		

	Winter-2015 Examinations
S	ubject Code: 17318Model AnswerPage 11 of 29
	$I = \frac{V}{Z}, = \frac{230}{5.00166}$ I = 45.9847 \approx 46 Amp(1 Mark)
	Step-4: To Power Factor =
	$\cos \phi = \frac{R}{Z}, = \frac{3}{5.00166}$
	$Cos\phi = 0.5998 \approx 0.6$ (1 Mark)
d)	State and explain Lenz's law.
Ans:	Statement : (2 Mark) The direction of induced emf produced due to the process of electromagnetic induction is always such that, it will set up a current to oppose the basic cause responsible for inducing the emf.
	Explanation : (2 Mark) The mathematical representation is, $e = -N (d\Phi/dt)$,
	Where 'e' = Induced emf , N = No. of turns in coil, $d\Phi/dt$ = rate of change of flux
	where -ve sign indicates opposition to induced emf.
e)	Explain the statically induced emf and dynamically induced emf.
Ans:	Statically induced emf : (2 Mark)
	In the Statically induced emf flux linkined with coil or winding changes (d Φ /dt) and
	coil or winding is stationary such induced emf is called Statically induced emf
	$\mathbf{E} = -\mathbf{N} \left(\mathbf{d}\Phi/\mathbf{d}t \right)$
	Dynamically induced emf: (2 Mark)
	If flux linking with a particular conductor is brought about by moving the coil in
	stationary field or by moving the magnetic field w.r.t. to stationary conductor. Then the
	e.m.f. induced in coil or conductor is known as "Dynamically induced e.m.f.
	$E = B l. v. sin\theta$ volts

Subject Code: 17318

Winter- 2015 Examinations Model Answer

Page 12 of 29

f)	Explain the working principle of 3-phase induction motor.				
Ans:	Working principle of 3-phase induction motor:(Working principle :4 Mark)				
	 When 3-phase stator winding is energized from a 3-phase supply, a rotating magnetic field is set up in air gap which rotates round the stator at synchronous speed Ns (= 120 f/P). The rotating field passes through the air gap and cuts the rotor conductors, which as yet, are stationary. Due to the relative speed between the rotating flux and the stationary rotor, e.m.f.s are induced in the rotor conductors. 				
	 Since the rotor circuit is short-circuited, currents start flowing in the rotor conductors. The current-carrying rotor conductors are placed in the magnetic field produced by the stator. Consequently, mechanical force acts on the rotor conductors. 				
	 tends to move the rotor. In the same direction as the rotating field according to Lenz's law. 				
Q.4	Attempt any FOUR of the following : 12 Marks				
a)	An alternating voltage is mathematically expressed as $v = 141.42 \sin (157.08 t + \frac{\pi}{12})$ volt. Find maximum value, PMS value, frequency and periodic time				
Ans:	Given data :				
	$\pi = 141.42 \sin(157.09.4 \pm \pi)$				
	$\mathbf{v} = 141.42 \sin \left(157.08 \ \mathbf{t} + \frac{\pi}{12} \right)$				
	i) maximum value Vm : 141.42 V (1 Mark)				
	ii) RMS value Vrms = 0.707 x Vm (1/2 Mark) = 0.707 x 141.42				
	= 99.9839 Volt (1/2 Mark)				
	iii) Frequency = $\frac{\omega}{2 \pi}$				
	$=\frac{157.08}{2 \pi}$				
	$F = 25 H_Z$ (1/2 Mark)				
	iv) Periodic Time = $\frac{1}{f} = \frac{1}{25}$				
	= 0.04 sec(1/2 Mark)				

Subject Code: 17318

Winter– 2015 Examinations <u>Model Answer</u>

Page 13 of 29

Winter- 2015 ExaminationsSubject Code: 17318Model Answer	Page 14 of 29
Explanation: From the above characteristics:-	
When Slip (S) ≅0 (i.e N≅Ns) torque is almost zero at no load, hence cha from origin	aracteristics start
As load on motor increases Slip increases and therefore torques increases	s.
For lower values of load, torque proportional to slip, and characteristics w nature.	will having linear
 At a particular value of Slip, maximum torque conditions will be obtained SX₂ 	d which is $R_2 =$
For higher values of load i.e. for higher values of slip, torque inversely pr and characteristics will having hyperbolic nature. In short breakdown occupand	roportional to slip curs due to over
 The maximum torque condition can be obtained at any required slip by cl resistance. 	hanging rotor
d) Explain construction of 3-phase I.M. with diagram.	
1. Constructional detail of slip ring induction motor:	1
Stator Slip Rings	Slip rings
Rotor- Starting Resistance OR	External star connected rheostat
Explanation:It consist laminated cylindrical core and it carries three phase windings.	
The rotor winding may be single layer or double layer.	

		Winter–2015 Examinations	
S	ubject Code: 17318	Model Answer	Page 16 of 29
e)	List out speed control n	nethods for 3-phase induction motor. Explain	n any one in brief.
Ans:		(List : 2 Marks & 2 Marks for any o	ne method explanation)
	Following methods to co	ontrol the speed of 3 phase induction motor:	(Explanation of any one
	method is expected)		
	1) By Varying	applied frequency (Frequency control)	
	2) By varying a	applied voltage (Stator voltage control)	
	3) Rotor resista	ince control.	·····
	4) By varying 1 5) By Voltage/	frequency control (V/f) method	anging)
	5) by voltage	frequency control (V/I) include	
	1. by varying applied F	requency (Frequency control):	
		Phase	
		Control	
			Three phase
	phase -	-tt DC + 22	vonable voltage
	input	Inverter	output
		Voitage to Firing	
		Converter	
		Frequency control method bloch diagram	
	➢ The synchro	onous speed of an induction motor is given by	$N_s = \frac{120 \times f}{P}.$
	➢ It is clear from the second sec	om the equation that the speed of the induction	motor can be changed by
	changing the	e frequency of the supply.	
	 The speed of Changing the 	I the motor will increase if frequency increases	and vice versa. Therefore this method is
	only employ	yed where the variable frequency alternator is a	vailable for the above
	purpose.		
	2. By varying applied ve	oltage (Stator voltage control):	
	\succ This method	l is very easy but rarely used in commercial pra	actice because a large
	variation of	voltage produces a very small change in speed	and much energy is
	wasted.	ad three resistances are inserted in series with t	he stator winding of the
	motor and t	be value of these resistances is varied by a com	mon handle, so that equal
	resistances	come in the stator circuit.	
	➢ For a particular	alar load when voltage increases, speed of the r	notor also increases and
	vice-versa.		

Winter-2015 Examinations **Model Answer**

Page 17 of 29

Coil-1 & c oil-3 are in series and they form one coil group while coil-2 & coil-4 connected

	Winter-2015 Examinations	
S	ubject Code: 17318Model AnswerPage 18 of 29	
	 in series to form another coil group. These two coil groups are connected in series such that all coils are magnetized in the same direction. > Hence these coils form 4-North poles and 4-South poles. Thus this arrangement gives total 8-poles. > If two coil groups are connected in series as shown in fig (b), there will be only 4- poles formed. Thus synchronous speed in this case will be doubled than first case. 	
	5. By Voltage/ frequency control (V/f) method:	
	 If the ratio of voltage to frequency is kept constant, the flux remains constant. If the ratio of voltage to frequency is kept constant, the flux remains constant. The maximum torque which is independent of frequency can be maintained approximately constant. However at a low frequency, the air gap flux is reduced due to drop in the stator impedance and the voltage has to be increased to maintain the torque level. This type of control is usually known as Volts/ Hertz or V/f control. A simple circuit arrangement for obtaining variable voltage and frequency is as shown in the above figure. 	
f)	Draw the schematic representation and state the principle of working of split phase single phase induction motor	
Ans:	Circuit diagram of resistance split single phase induction motor:	
	(Figure : 2 Marks & Working : 2 Marks)	
	Starting Winding Augusto	

	Winter–2015 Examinations				
S	Subject Code: 17318 <u>Model Answer</u>	Page 19 of 29			
	Working of resistors split single phase induction motor:				
	➤ In resistors split phase I.M. shown in above figure 'a', the main windi	ng has low resistance			
	but high reactance whereas the starting winding has a high resistance, but low reactan				
	\succ The resistance of the starting winding may be increased either by connecting a high				
	resistance 'R' in series with it or by choosing a high-resistance fine copper wire for				
	winding purpose.				
	A centrifugal switch S is connected in series with the starting winding	and is located inside			
	the motor.				
	It function is to automatically disconnected the starting winding from	the supply when the			
	motor has reached 70 to 80 per cent of its full load speed.				
Q.5	Attempt any FOUR of the following :	16 Marks			
a)	connected in series across 100 volts, 50 Hz, AC supply. Find : (i) current	(ii) power factor			
	(iii) power (iv) draw phasor diagram.				
Ans:	I = V/Z				
	$X_L=2 \pi f L=2\pi \times 50 \times 0.1$	(1/2 Mork)			
	1	(1/2 WIALK)			
	$X_{C} = \frac{1}{2\pi f C}$				
	=				
	$2\pi imes 50 imes 100 imes 10^{-6}$				
	$X_c = 31.8309 \ ohm$	(1/2 Mark)			
	Im pedance $Z = \sqrt{(R)^2 + (X_1 - X_2)^2}$				
	Im pedance $Z = \sqrt{(10)^2 + (31.4159 - 31.8309)^2}$				
	Im pedance $Z = 10.0035$ ohm	(1/2 Mark)			
	i) To Find Current=				
	$I = \frac{V}{Z}, = \frac{100}{10.0035}$				
	<i>I</i> = 9.9964 <i>Amp</i>	(1/2 Mark)			

		Winter-2015 Examinations	\$			
S	ubject Code: 17318	Model Answer	Page 20 of 29			
	ii) To Power Factor =					
	С	$\cos\phi = \frac{R}{Z}, = \frac{10}{10.0035}$				
	Co	$s\phi = 0.9996$	(1/2 Mark)			
	iii) Power =					
	Р	$= V I Cos \phi$	(1/2 Mark)			
	Р	= 100 × 10 × 0.9996				
	P	= 999.6426 Watt	(1/2 Mark)			
	iv) Phasor diagram:		(1/2 Mark)			
	~	Ve .I = 10A Y = 100y YL	or equivalent figure			
b)	Three identical coils eac delta across 400 V, 50 H line current (iv) power co	h having a resistance of 15 ohm z supply. Determine (i) impedan onsumed.	and an inductance of 0.03 H are in ce per phase (ii) phase current (iii)			
Ans:	To Find Reactance :					
	X	$X_L = 2\pi f L, X_L = 2 \times \pi \times 50 \times 0.0$	3			
	X	$L_L = 9.424 / ohm$	(1/2 Mark)			
	i) Find Phase Imped	ance :				
	Im pedance Z	$=\sqrt{(15)^2 + (9.4247)^2}$	(1/2 Mark)			
	Im pedance Z	=17.7151 Ω	(1/2 Mark)			

S	ubject Code: 17318	Winter– 2015 Examinations <u>Model Answer</u>	Page 21 of 29
	ii) To Find Phase C	Current : $I_{Ph} = \frac{V_{Ph}}{Z}, = \frac{400}{17,7151}$	
		$I_{Ph} = 22.5796 Amp$	(1/2 Mark)
	iii) To Find Line C $I_L = \sqrt{3} \times$	urrent : $I_{Ph} = \sqrt{3} \times 22.5796$ $I_{Ph} = 39,1090,4mp$	(1/2 Mark)
	To Find Power Fa	$T_L = 59.1090 \ Amp$	(1/2 Mark)
	0	$\cos\phi = \frac{R}{Z}, = \frac{15}{17.7151}$	
	(iv) power consume	$Cos\phi = 0.8467$	(1/2 Mark)
		$P = \sqrt{3} \ V_L I_L \ Cos \ \phi \$	(1/2 Mark)
	I	$P = \sqrt{3} \times 400 \times 39.1090 \times 0.8467$ $P = 22941.76833 Watt \approx 2.2 kw$	(1/2 Mark)
c)	A 200 kVA, 3300/240 V Calculate (i) Primary flux (iii) Number of pr	V, 50 Hz single phase transformer has 80 turns of current and secondary current on full load. (i imary winding turns.	on secondary winding. ii) Maximum value of
Ans:	$V_1 = 3300 V$ $V_2 = 24$ i) To Find full load	$V V_I = ? N_2 = 80 I_1 = ? I_2 = ?$ Primary current I ₁ :-	
	I_1	$=\frac{KVA\times10^{3}}{V_{1} \ volt}$	(1/2 Mark)

	Winter- 2015 Examinations	
Subject Code: 17318	Model Answer	Page 22 of 29
	$Y_1 = \frac{200 \times 10^3}{3300}$	
	$I_1 = 60.6060 \ Amp$	(1/2 Mark)
To Find full lo	ad Secondary I ₂ :	
	$I_2 = \frac{KVA \times 10^3}{V_2 \ volt} \dots$	(1/2 Mark)
	$I_2 = \frac{200 \times 10^3}{240}$	
	$I_2 = 833.333 Amp$	(1/2 Mark)
ii) Number of prima	ary winding turns N1:	
	$\frac{N_2}{N_1} = \frac{N_2}{N_1}$ OR $\frac{V_1}{V_2} = \frac{N_1}{N_2}$,	
	$N_1 = \frac{V_1}{V_2} \times N_2 \qquad$	(1/2 Mark)
	$N_1 = \frac{3300}{240} \times 80$ N = 1100 turns	(1/2 Mark)
		(1/- 1/)
III) Maximum Hux:		
$E_1 = 4.$ $\phi_m = -\frac{1}{4}$ $\phi_m = -\frac{1}{4}$	$ \frac{E_1}{44 \times f \times N_1} $ $ \frac{3300}{44 \times 50 \times 1100} $	(1/2 Mark)
$\phi_m = 0$.01351 <i>Wb</i>	(1/2 Mark)

Subject Code: 17318

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Winter- 2015 Examinations Model Answer

Page 23 of 29

	S.No	Points	Squirrel Cage Induction Motor	Slip Ring Induction Motor
	i)	Rotor construction	Simple and robust, Rotor is permantaly short circuited	Complicated and bulkily, Rotor one end is connected to slip rings.
	ii)	Starting torque	Poor	Higher
	iii)	Efficiency	Better	Lower
	iv)	Applications.	For driving somehow constant load e.g. Lathe Machine, Workshop Machine and water pump and constant speed applications	For driving heavy load where high starting torque is required e.g. Lift, Crane, Elevators, conveyor belts etc and variable speed applications
e) I Ans: (<u>Explain r</u> Construc	<u>n brief constructiona</u> tional detail of slip ri	ing induction motor: (Figure :	i motor. 2 Mark & Construction: 2 N
	Stator Rotor-	Starting Resistance	Slip Rings	Rolor
			 A second and a second and as 	frame

	Winter-2015 Examinations	
S	Subject Code: 17318 Model Answer	Page 24 of 29
	> The rotor winding may be single layer or double layer.	
	> The rotor winding is uniformly distributed in slots and it is always star co	onnected.
	Rotor is wound for same number of poles as that of the stator winding.	
	Three phases of rotor winding is are shorted internally to form star point a	and other three
	winding terminals are brought out and joined to three insulated slip rings	mounted on the
	which g terminals are brought out and joined to three insulated sup rings	mounted on the
	rotor shaft.	
	One brush is resting on each slip ring. These three brushes are further ext	ernally connected
	to three phase star connected rheostat.	
f)	Write four applications of stepper motor.	
Ans:	Following are the applications of stepper motor: (Any Four Applications of stepper motor: (Any Four Applications of stepper motor)	expected: 1Mark
	each)	
	1. Suitable for use with computer controlled system	
	2. Widely used in numerical control of machine tools.	
	3. Tape drives	
	4. Floppy disc drives	
	5. Computer printers	
	6. X-Y plotters	
	7. Robotics	
	8. Textile industries	
	9. Integrated circuit fabrication	
	10. Electric watches	
	11. In space craft's launched for scientific explorations of planets.	
	12. In the production of science friction movies	
	13 Automotive	
	14. Food processing	
	15. Packaging	
Q.6	Attempt any FOUR of the following : 1	6 Marks
	Three impedances each of 3 ohm resistance and 4 ohm inductive reactant	nce in series are
a)	connected in star across 3-phase, 400 V, 50 Hz, AC supply. Determine : (i) H	Phase current (ii)
A	Line current (iii) Power factor (iv) Total power.	
Ans:	$X_L = 4 \text{ ohm}$	
	impedance Find impedance =	
	Im pedance $Z = \sqrt{(R)^2 + (X_L)^2}$	(1/2 Mark)
	Im pedance $Z = \sqrt{(3)^2 + (4)^2}$	

	Winter-2015 Examinations	
Subject Code: 17318	Model Answer	Page 25 of 29
Im pe	dance $Z = 5 \Omega$	(1/2 Mark)
Phase voltage	:	
V_{Ph}	$=\frac{V_L}{\sqrt{2}}=\frac{400}{\sqrt{2}}$	
V	$\sqrt{3}$ $\sqrt{3}$ - 230.94 Valt	(1/2 Mark)
V PI	$h_h = 230.94$ von	(1/2 Wark)
(i) Phase current	:	
	Vz. 230.94	
	$I_{Ph} = \frac{V_{Ph}}{Z_{Ph}}, = \frac{2500 V}{5}$	
	$I_{Ph} = 46.188 Amp$	(1/2 Mark)
(ii) Line current •		
	$I_L = I_{Ph}$	
	$I_L = 46.188 Amp$	(1/2 Mark)
(iii) Power factor	:	
	$C_{\alpha\alpha} \phi = \frac{R}{2} = 3$	
	$\cos \varphi - \frac{1}{Z}, -\frac{1}{5}$	
	$Cos\phi = 0.6$	(1/2 Mark)
		(1/- 1/11/1)
(iv) Total power.		
	$P = \sqrt{3} V I \cos \phi$	(1/2 Mark)
	$I = \sqrt{3} V_L I_L \cos \psi$	(1/2 WIAIK)
	$P = \sqrt{3} \times 400 \times 46.188 \times 0.6$	
	<i>P</i> =19199.99105 <i>Watt</i>	(1/2 Mark)
	P = 19.1999 KWatt	

		Winter-2015 Examinations	
S	ubject Code: 17318	Model Answer	Page 26 of 29
b)	A 100 kVA, single phase Find the efficiency of the	transformer has a full load Cu loss of 3 kW as transformer at half and full load at unity powe	nd iron loss of 2 kW. er factor.
Ans:	Efficiency at half Load <i>i</i>	$n_{\rm m} = \frac{1/2 \times KVA \times Cos\phi}{1/2 \times KVA \times Cos\phi}$	×100
		$\frac{1}{2} \times KVA \times Cos\phi + Iron \ losses + (1/2)^2 \ co$	opper losses
		$1/2 \times 100 \times 1$	(1 Mark)
		$\eta_{HL} = \frac{172 \times 100 \times 1}{1/2 \times 100 \times 1 + 2 + 0.75} \times 100$	
		$\eta_{\rm HL} = 94.79~\%$	(1 Mark)
	Efficiency of Full Load a	$KVA \times Cos\phi$	$\times 100$ (1 Mark)
	Efficiency at Full Load η	$\int_{FLL} = \frac{1}{KVA \times Cos\phi + Iron \ losses + \ copper \ losses}$	$- \times 100 - (1 \text{ Wark})$
		100 × 1	
		$\eta_{FLL} = \frac{100 \times 1}{100 \times 1 + 2 + 3} \times 100$	
		0.5.00.00	
		$\eta_{FL} = 95.23\%$	(1 Mark)
c)	A single phase transform draws 6 A at 0.9 lagging transformer is 2. Calcu condition	mer delivers 10 A at 220 V to a resistive load g power factor from 450 V, 50 Hz supply. The late the percentage efficiency and percentage	d while the primary ne turns ratio of the ge regulation in this
Ans:	$W_1 = V_1 I_1 Cos$	<i>φ</i> ₁	(1/2 Mark)
	$W_1 =$	450×6×0.9	
	$W_1 =$	2430 Watt	
	$W_2 = V_2 I_2 C c$	$p_s \phi_2$	(1/2 Mark)
	$W_2 =$	= 220×10×1	
	$W_2 =$	= 2200 Watt	
	Percentage efficiency:		
	$\mathcal{N}_{0} \eta = \frac{W_{2}}{W_{1}} \times$	<100	(1/2 Mark)
	% $\eta = \frac{220}{24}$	$\frac{20}{30} \times 100$	
	% $\eta = 90.5$	5349 %	(1/2Mark)

		Winter- 2015 Examina	ations
S	Subject Code: 17318	Model Answer	Page 27 of 29
	% Regulation		
		$\frac{N1}{N2} = 2Given$	ı
		$\mathbf{K} = \frac{N2}{N1} = 0.5$	
		$K = \frac{V2}{V1} = 0.5$	(1/2 Mark)
	N	o load secondary voltage	V2 = 0.5 x V1
		= 0.5 x 450	
		=225 volt	(1/2 Mark
	% Regulation $= \frac{No \ load}{No \ seco}$	ndary voltage– full load s full load secondaryvoltge	secondaryvoltgae ae (1/2 Mark)
		% Regulation $= \frac{225-225}{225}$	$\frac{-220}{25}$ × 100
		% Regulation =2.22 %	//o (1/2 Mark)
d)	Explain the principle of worl	king of universal motor.	
Ans:	Figure of Universal motor:	(Figure	e : 2 Marks & Explanation : 2 Marks)
	SERIES FIELD COILS BRUSH	SALIENT POLES	or DC

S	Winter- 2015 ExaminationsSubject Code: 17318Model Answer	Page 28 of 29
	OR Equivalent figure Working of universal motor: A universal motor works on either DC or single phase AC supply. When the	universal motor
	is fed with a DC supply, it works as a DC series motor. When current flows	in the field
	winding, it produces an electromagnetic field. The same current also flows f	rom the armature
	conductors. When a current carrying conductor is placed in an electromagne	tic field, it
	experiences a mechanical force. Due to this mechanical force, or torque, the	rotor starts to
	rotate. The direction of this force is given by <u>Fleming's left hand rule</u> .	
	 When fed with AC supply, it still produces unidirectional torque. Because, a and field winding are connected in series, they are in same phase. Hence, as changes periodically, the direction of current in armature and field winding r same time. Thus, direction of magnetic field and the direction of armature current revers that the direction of force experienced by armature conductors remains same regardless of AC or DC supply, universal motor works on the same principle motor works. 	rmature winding polarity of AC reverses at the ses in such a way b. Thus, e that DC series
0)	Draw and explain working of maggar	
Ans:	Diagram of Megger: (Diagram : 2 Mark & Working	g : 2 Marks)
	Working of Megger: > The voltage for testing is supplied by a hand generator incorporated in the by battery or electronic voltage charger. It is usually 250V or 500V and is	gure e instrument or s smaller in size.

S	Winter– 2015 Examinations Subject Code: 17318 Model Answer Pa	ae 29 of 29
5		Jo 27 01 27
	➢ A test volt of 500V D.C is suitable for testing ship's equipment operating at 44	0V A.C.
	Test voltage of 1000V to 5000V is used onboard for high voltage system onboard	ard.
	> The current carrying coil (deflecting coil) is connected in series and carries the	current
	taken by the circuit under test. The pressure coil (control coil) is connected acre	oss the
	circuit.	
	Current limiting resistor – CCR and PCR are connected in series with pressure	and current
	coil to prevent damage in case of low resistance in external source.	
	> In hand generator, the armature is moving in the field of permanent magnet or	vice versa,
	to generate a test voltage by electromagnetic induction effect.	
	\succ With an increase of potential voltage across the external circuit, the deflection	of the
	pointer increases; and with an increase of current, the deflection of pointer decr	rease so the
	resultant torque on the movement is directly proportional to the potential differ	ence and
	inversely proportional to the resistance.	
	> When the external circuit is open, torque due to voltage coil will be maximum	and the
	pointer will read "infinity". When there is short circuit the pointer will read "0"	
f)	What is ELCB and MCCB? State its function.	
Ans:	ELCB Means:	1 Marks)
	Earth Leakage circuit breaker	
	Function of ELCB :	1 Marks)
	An Earth Leakage Circuit Breaker (ELCB) is a device used to directly detect of	urrents
	leaking to earth from an installation and cut the power and avoid the person ge	tting shock.
	MCCB Means:	(1 Marks)
	Moulded Case circuit breaker	(
		(1. 1. 7. 1.)
	Function of MCCB : (I Marks)
	condition.such as over current due to short circuit or over load.	

-----END-----