

Page No: 1 of 20

Subject Code: 17214 (FEE)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Summer – 2016 Examinations

Subject Code: 17214 (FEE)

Model Answers

- 1 Attempt any TEN of the following:
- Differentiate between Direct current and Alternating current. (any two points) 1 a)
 - Ans:

Particulars	Alternating Current	Direct Current	
1. Waveform			1 mark for each of any two points
2. Definition	It is the current whose	It is the current whose	
	magnitude and direction	magnitude and direction	
	continuously changes with	do not change with respect	
	respect to time.	to time.	
3. Use of transformer	Possible	Not possible	
4. Distribution efficiency	High	Low	
5. Design of machines	Simple	Complicated	
6. Generation	Mostly by	Mostly by electrochemical	
	electromechanical energy	energy conversion and also	
	conversion	by conversion of AC to	
		DC using converters	
7. Applications	AC machines, Domestic	DC machines,	
_	and industrial supply	electroplating, HVDC	
		system, Battery charging	

Define emf and resistance. 1 b)

Ans:

EMF:

The electric force that moves electric charges in conductor and produces electric current is called as 'Electro-motive force' (EMF).

Resistance:

The opposition offered by any material to the flow of electric charges is called its resistance.

State the different types of resistors. 1 c)

Ans:

Types of Resistors:

Linear Resistor			Non-linear 1	Resistor
Fixed Resistor	Variable Resistor	i)	Thermisto	or
i) Carbon Composition	i) Potentiometer	ii)	Light	Dependent
ii) Wire wound	ii) Trimmers		Resistor (LDR)
iii) Metal film	iii) Rheostat	iii)	Varistor	
OR				

1/2 mark for each of any four types

- 1) Carbon Composition
- 2) Deposited Carbon
- 3) High-voltage Ink film
- 4) Metal film
- 5) Metal glaze

1 mark for

each

definition

			Summer – 2016 Examinations		
Sul	bject Code: 1	7214 (FEE)	Model Answers	Page No:	3 of 20
	6) Wir 7) Cerr	e-wound met			
d)	State Ohm' Ans: Ohm's law As long as constant, th proportiona i.e $V\alpha I$ o where $R = \alpha$	s law. physical condit potential diffe l to current flowi or $V = R I$ constant of propo	ions (such as dimensions, pressure a erence or voltage applied across the o ng through it. rtionality, called as the resistance of the	and temperature) are conductor is directly e conductor.	1 mark for statement 1 mark for equation
e)	State the co Ans: Concept of Every pract components finite low r resistance' the internal Voltage Dr voltage sou	incept of internal internal voltage tical source offer s. e.g. a 12V batt resistance. Such of source. When resistance causes rop'. Due to this irce is always less	voltage drop. e drop: s some opposition to the current due to tery has electrodes made up of conduct a resistance of internal parts of source source delivers current to load, the cur s voltage drop across it. This voltage drop s internal voltage drop, the terminal than its emf.	o its internal parts or cting material having ce is called 'Internal rrent flowing through rop is called 'Internal voltage of practical	1 mark for internal resistance 1 mark for internal voltage drop
f)	Define Cap Ans: Capacitor: It is an elect storage.	acitor.	n is capable of storing energy in the fo	orm of electric charge	2 marks for any equivalent definition
g)	State the ter Ans: Di-electric The voltage losing its di or kV/cm.e.	rm Di-electric stro Strength: e which a dielect ielectric property) .g dielectric stren	ength. ric material can withstand without bre) is called its dielectric strength. It is re gth of air is @ 30kV/cm or 3kV/mm.	aking down (without presented by kV/mm	2 marks for statement
h)	State the ap Ans: Application i) ii) iii) iii) iv)	plications of electrolytic ns of electrolytic Decoupling or no DC link circuits i Coupling capacit Energy storage ir	trolytic capacitors. (any two) capacitors: ise filtering in power supplies. n variable frequency drives. or in amplifiers i flash-lamps		1 mark for each of any two

Su	bject Code: 17214 (FEE)	Summer – 2016 Examinations <u>Model Answers</u>	Page No:	4 of 20
i)	Draw B-H curve for magnetic curve Ans: B-H curve for magnetic curve ma The B-H curve is concave up for I for medium flux densities, it becomes flux densities curve concaves down becomes flat i.e. saturation occures.	e material. Aterial: ow flux desities upto point A, mes straight (AB), for heigher n (after point B) Then almsot	$\begin{array}{c c} & Saturation \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	2 marks (explanation is optional)
j)	 State the applications of electromage Ans: Applications of Electromagnet: As Field and armature in DC Ma In cores of solenoid valves. In cores of electromechanical rel In electromagnetic circuits of all Electrical measuring instruments Cores of transformers. 	gnet. achine. ays. AC Machines		¹ ⁄2 mark for each of any four
k)	State Lenz's law. Ans: Lenz's law: It states that the direction of an indu produces it. In fact, the induced en and this magnetic flux opposes the induction.	uced emf is such that it always o mf produces current, which pro changing magnetic field that is	pposes the cause that oduces magnetic flux s responsible for emf	2 marks
1)	State different types of inductors. Ans: Types of inductors: i) Iron cored inductor ii) Air cored inductor iii) Ferrite cored inductor			1 mark for each of any two
m)	Write the equation of ac voltage. Ans: Equation of ac voltage: v Where, $v =$ instantaneous value of v $V_m =$ Maximum value of vo $\phi =$ Phase angle	$w = V_m \sin(\omega t \pm \emptyset)$ voltage in volt oltage in volt		1 mark for equation 1 mark for description of terms
n)	 State the properties of good insulation Ans: Properties of good insulating mate 1) Resistivity should be very h 2) It should be water resistant. 3) It should not contain impuri 4) It should not be affected by 	ng materials. erials: igh. ties. chemical process or corroded ea	asily.	¹ ∕₂ mark for each of any four

Page No: 5 of 20

- 5) It should be heat resistant and fire-proof.
- 6) It should be mechanically strong.
- 7) It should not be porous.

2 Attempt any FOUR of the following:

Subject Code: 17214 (FEE)

2 a) State the following effects of currents: (i) Heating effect, (ii) Magnetic effect. Ans:

(i) Heating effect :

When an electric current flows through a conductor, the flow of electron is 2 marks opposed by the resistance of conductor and heat is produced. Joules law of heating: The heat produced is directly proportional to the square of

the current, resistance and time for which current flows.

ΗαI²Rt

It is utilized in electric irons, water heaters, Hot plates, electric lamps etc.

(ii) Magnetic Effect:

Whenever a conductor carries electric current, the magnetic field is produced. If 2 marks the conductor is a straight conductor, the magnetic field is produced round the conductor itslef. If the conductor is in the form of coil or winding (solenoid) wound over the core, the magnetic field is produced in the core.

2 b) Calculate the total resistance across AB using star/delta transformation.

Ans: Method I: <u>Step 1: Converting Inner Star into equivalent Delta</u> $R_{AB} = R_A + R_B + \frac{R_A R_B}{R_C}$ $R_{AB} = 1 + 1 + \frac{1 \times 1}{1} = 3 \Omega$ Similarly, $R_{BC} = 3 \Omega$ $R_{CA} = 3\Omega$ <u>Step 2: Modified Network</u>

1 mark for each step

10

R

iΩ

Inner equivalent delta appears in parallel with outer delta.

$$i_c(0) = I_0 = \frac{V}{R}$$

2 marks for explanation

Page No: 7 of 20

The voltage across capacitor slowly builds up exponentially and finally reaches to Supply voltage V at instant $t \rightarrow \infty$. The initial charging current falls exponentially to zero as $t \rightarrow \infty$.

The voltage across the capacitor at any instant t is given by,

 $v_c = V(1 - e^{-\frac{t}{\tau}})$

Subject Code: 17214 (FEE)

Where, V is the maximum voltage to which capacitor can charge (supply voltage)

 $\tau = RC = charging time-constant of the circuit.$

(b) Variation in capacitor voltage while charging (c) Variation in capacitor current while charging The instantaneous charging current is given by,

$$c = I_0 e^{-\frac{t}{\tau}}$$

where, I_0 is the maximum current at instant t = 0The charging curves for voltage and current are shown in the fig (b) and (c) respectively.

- 2 d) Define the terms: (i) MMF (ii) Reluctance (iii) Flux density (iv) Permeance Ans:
 - (i) MMF: It is the force that drives magnetic flux through magnetic circuit. It is equal to the work done in joules in carrying unit magnetic pole once through the entire magnetic circuit. It is measured in amp-turns.
 - (ii) **Reluctance:** The property of opposition offered by magnetic circuit to establish magnetic flux in it is called as "Reluctance". It's unit is AT/weber.
 - (iii) **Flux density:** It is defined as the magnetic flux passing per unit area perpendicular to the flux. It is measured in Wb/m^2 .
 - (iv) **Permeance:** It is the reciprocal of reluctance and implies the readiness with which magnetic flux is developed. It is measured in Wb/AT.
- 2 e) A coil consisting of 120 turns is placed in magnetic field of 0.8 mub mWb. Calculate the average emf induced in the coil when it is moved in 0.08 sec from the given field of to 0.3 mub mWb. If the resistance of the coil is 200Ω, find the induced current in the coil.

Ans: Given: No. of turns N = 120 2 marks for Initial magnetic field $\phi_I = 0.8 \text{ mWb}$ emf Final magnetic field $\phi_F = 0.3 \text{ mWb}$ Time of movement dt = 0.08 sec Resistance of coil R= 200 Ω 2 marks for Average induced emf is given by, $E = -N \frac{d\phi}{dt} = -N \frac{\phi_F - \phi_I}{dt} = -120 \times \frac{(0.3 - 0.8)10^{-3}}{0.08} = 0.75V$

1 mark for curves

1 mark for each definition

Page No: 8 of 20

Subject Code: 17214 (FEE)

Current induced in the coil $I = \frac{E}{R} = \frac{0.75}{200} = 3.75 \ mA$

2 f) Compare dry cell and liquid cell on the basis of principle of operation, cost, life and maintenance.

Ans:

Comparison between Dry cell and Liquid Cell:

somparison seen	con Bry con and Biquita cont		
Particulars	Dry Cell	Liquid Cell	
Principle of	Irravaraible abamical action	Bayarsible shamiasl action	
operation	Ineversible chemical action	Reversible chemical action	
Cost	Lower	Higher	
Life	Lower	Higher	
Maintananaa	Vory low maintenance	Maintenance required at	
Maintellance	very low maintenance	regular intervals	

3 Attempt any four:

3 a) Describe duality between series and parallel electrical circuit. Ans:

Duality between Series and Parallel Circuit:

Series circuit.	Parallel circuit
1) $I_T = I_1 = I_2 = I_3 = \dots$	$V_{\rm T} = V_1 = V_2 = V_3 = \dots$
Current is same through all the	Voltage is same across all the parallel
branches of the circuit	branches of the circuit
2) $V_T = V_1 + V_2 + V_3 + \dots$	$I_T = I_1 + I_2 + I_3 + \dots$
Total voltage is addition of all voltage	Total current is addition of all branch
drops	currents
3) $R_T = R_1 + R_2 + R_3 + \dots$	$G_T = G_1 + G_2 + G_3 + \dots$
Total resistance is addition of all	Total conductance is addition of all
individual resistances	individual conductances
4) $I_T = V_1 / R_1 = V_2 / R_2 = V_3 / R_3$	$V_T = I_1/G_1 = I_2/G_2 = I_3/G_3$
Total current can be obtained by	Total voltage can be obtained by
applying ohm's law at any individual	applying ohm's law at individual
resistance.	branch.

16

1 mark for each point

1 mark for each point

3 b) Three capacitors having capacitance of 4μ F, 6μ F and 8μ F respectively. Find the equivalent capacitance when they are connected in (i) Series (ii) Parallel. Ans:

Given: $C_1 = 4\mu F$, $C_2 = 6 \mu F$, $C_3 = 8\mu F$

i) For Series combination: $1/C_s = (1/C_1)+(1/C_2)+(1/C_3)$ 1 mark $1/C_s = (1/4)+(1/6)+(1/8)$ $1/C_s = 0.25+0.167+0.125$ 1 mark $1/C_s = 0.542$ $C_s = 1.845 \ \mu\text{F}$ ii) For parallel combination: $C_p = C_1 + C_2 + C_3$ 1 mark $C_p = 4 + 6 + 8$

Summer – 2016 Examinations **Model Answers**

Page No: 9 of 20

1 mark

 $C_{p} = 18 \ \mu F$

Explain Hysteresis loop of magnetic material with neat diagram. 3 c) Ans:

Hysteresis loop of magnetic material:

The circuit arrangement for plotting the hysteresis loop is shown in figure. The electromagnetic part consists of a coil wound on the iron ring. The current direction can be reversed using reversible switch as shown. The magnitude of current is changed by

varying the resistance. Magnetic ring is subjected to a cycle of magnetization and demagnetization for both the directions of the current. Then it is found that flux density B in the ring lags behind the applied magnetizing force H. The graph of flux density В versus

magnetizing force H plotted for one magnetic reversal is called hysteresis loop. Meaning of hysteresis is to lag behind.

Hysteresis loop represents the loss of power while magnetizing the circuit. The energy loss is given by the area under the hysteresis loop.

During demagnetization of core (ring) in forward or reverse direction of magnetic field, it is seen that even if the magnetizing force has reduced to zero, the flux density

Circuit diagram is optional

1 mark for Diagram of hysteresis loop

1 mark for explanation

2 marks for definition of 4 terms $(\frac{1}{2})$ mark each)

does not become zero. Some flux remains in the core. This flux is called "Remanent or residual flux" and the corresponding flux density is called "Residual magnetism". This property of magnetic material is referred as "Retentivity".

To wipe out the residual flux in the core, the magnetizing force in the opposite direction is required. This force is called "Coercive force H_c".

At large magnetizing force values, it is seen that there is no appreciable change in flux densities. The flux density remains constant in spite of change in magnetizing force. This is called "Magnetic saturation".

3 d) State Faraday's first law and second law of electromagnetic induction.

Ans:

Faraday's laws of electromagnetic induction:

1st law: When a conductor cuts or is cut by the magnetic flux, an emf is induced in the conductor. OR

Whenever a changing magnetic field links with a conductor, an emf is induced in it.

 2^{nd} law: The magnitude of emf induced in the coil is directly proportional to the rate of

change of flux linking with coil. i.e $e = -N \frac{d\phi}{dt}$

2 marks for each law

Summer – 2016 Examinations **Model Answers**

Page No: 10 of 20

- 3 Define the terms: Cycle, Frequency, Time and Amplitude. e) Ans:
 - 1. Cycle: A complete set of variation of an alternating quantity which is repeated 1 mark for each term at regular interval of time is called a "cycle". OR In an ac waveform, each repetition consisting of one positive and one identical negative part is called as one cycle.
 - 2. Frequency (f): It is defined as the number of cycles completed by an alternating quantity in one second.
 - 3. Time (Time period)(T): It is defined as the time taken in seconds by an alternating quantity to complete one cycle.
 - 4. Amplitude: The maximum value or peak value of an ac quantity is called as its amplitude. It is denoted by I_m, V_m etc.

Classify insulating materials on the basis of temperature withstanding ability with their 3 f) limiting temperature and one example. Ans:

2 marks f	Materials	Limiting temp. in ^O C	Class	Sr. No.
classifica	Cotton, silk paper, press board, wood.	90	Y	1
	Impregnated paper , silk, cotton, polymide resins	105	А	2
example	Cotton fabric, synthetic resin enamels, paper laminates, powder plastics.	120	Е	3
	Inorganic materials like mica, glass, asbestos impregnated with varnish	130	В	4
	Mica, polyester, epoxide varnishes	155	F	5
	Composite materials on mica, fibre, glass and asbestos bases, impregnated with silicon rubber	180	Н	6
	Mica, Ceramics, Glass, Teflon, Quartz etc.	Above 180	С	7

Attempt any FOUR: 4

4 a)

or tio

or S

Page No: 11 of 20

Calculate: (i) Total equivalent resistance of circuit (ii) Total current.

Ans:

Subject Code: 17214 (FEE)

In the above circuit, the resistors 6Ω and 12Ω are in parallel. The equivalent resistance is given by, $R_p = \frac{6 \times 12}{6+12} = \frac{72}{18} = 4\Omega$ 1 mark for R_p This resistance appears in series with other two resistors as shown below. The equivalent resistance of the circuit is given by, 1 mark for 8.0 $R_{eq} = 5 + 4 + 8 = 17\Omega$ www ww R_{ea} The total current is given by Ohm's law, 1 mark for $I = \frac{V}{R_{eq}} = \frac{20}{17}$ Ohm's law eq. zov = 1.176A1 mark for final solⁿ.

- 4 b) Define the terms: (i) Node, (ii) Passive network, (iii) Loop, (iv) Linear circuit. Ans:-
 - (i) Node:- A point or junction in an electric circuit at which two or more branches meet.
 (ii) Passive network:- Network without any energy source is called as passive definition
 - (ii) **Passive network:-** Network without any energy source is called as passive network
 - (iii) **Loop:-** Any closed path in an electric circuit where each element or branch is traversed only once

Or

Closed path in any network is called as loop.

(iv) **Linear circuit:** A circuit whose parameters (such as resistances, capacitances, inductances etc.) are always constant irrespective of changes in time, voltage or current is known as linear circuit.

Page No: 12 of 20

4 c) Derive the expression for energy stored in the capacitor with the help of neat diagram. Ans:-

Energy stored in Capacitor:

Subject Code: 17214 (FEE)

Let C be the capacitance of a capacitor in farad.

- v be the potential difference across capacitor in volt at a particular instant.
- q be the charge on the capacitor at that instant.

Therefore, potential difference $v = \frac{q}{c}$ or charge q = CvWhen the potential difference across capacitor is v and if small amount of charge dq is shifted from one plate to other, the voltage is changed by dv. Therefore, dq = C.dvThe work done in shifting a small charge dq against P. D. of v volt is given by, 1 mark for

=

$$dW = v. dq = \left(\frac{q}{c}\right) dq \qquad \text{OR} \qquad dW$$
$$v. dq = v. C. dv$$

The work done is stored as potential energy in the electrostatic field by the capacitor.

Therefore, total energy stored by the capacitor is given by,

E = work done
$$W = \int dW = \int \left(\frac{q}{c}\right) dq = \frac{1}{2c}q^2$$

$$= \frac{1}{2}C\left(\frac{q}{c}\right)^2 = \frac{1}{2}Cv^2 \text{ joules}$$
OR
 $W = \int dW = \int Cv \, dv = \frac{1}{2}Cv^2 \text{ joules}$

4 d) Give any two similarities and dissimilarities between electric and magnetic circuits. Ans:

Similarities between Electric and Magnetic Circuits:

Electric circuit	Magnetic circuit
Current: flow of electrons through conductor is current, it is measured in amp.	Flux: lines of force through medium from N pole to S pole form flux. It is measured in weber.
EMF: It is driving force for	MMF: It is driving force for
current, measured in volts.	flux, measured in amp-turn.
Resistance: It is opposition of	Reluctance: It is opposition
conductor to current, measured	offered by magnetic path to flux
in ohms	measured in AT/wb.
Resistance is directly	Reluctance is directly
proportional to length of	proportional to length of
conductor.	magnetic path.
For electric circuit we define the	For magnetic circuit we define
conductivity.	permeability.
Electric circuit is closed path for	Magnetic circuit is closed path
current.	for magnetic flux.
For electric circuit	For magnetic circuit
I = EMF/resistance	$\Phi = MMF/reluctance$
	Electric circuit Current: flow of electrons through conductor is current, it is measured in amp. EMF: It is driving force for current, measured in volts. Resistance: It is opposition of conductor to current, measured in ohms Resistance is directly proportional to length of conductor. For electric circuit we define the conductivity. Electric circuit is closed path for current. For electric circuit I = EMF/resistance

1 mark for each of any two similarities

Summer – 2016 Examinations Model Answers

Page No: 13 of 20

Dissimilarities between Electric and Magnetic Circuits:

Sr. No.	Electric circuit	Magnetic circuit	
1	Electric current flows	Flux does not actually flow	
		(it only gets established or set up)	
2	Energy is needed continuously for	Energy is only needed for	
	the flow of current	establishment of field (flux)	
3	Current cannot pass through the	Flux can pass through almost all	
	insulators.	things including air	
4	Electrical Insulator is available	Magnetic Insulator does not exist.	

1 mark for each of any two dissimilarities

4 e) Define: (i) Self inductance, (ii) Coefficient of Self-induction.

Ans:-

(i) Self inductance:

It is the property of a coil by virtue of which it opposes any change in current 2 marks flowing through it. In fact, when the current flowing through the coil attempts to change, an emf in induced and according to Lenz's rule, it acts in such a way that the change in current is opposed.

(ii) **Coefficient of self- induction:** Coefficient of self- induction of a coil is defined as the ratio of the electromotive force produced in a coil by self-induction to the rate of change of current producing it.

 $L = \frac{N\frac{d\phi}{dt}}{\frac{di}{dt}} = N\frac{d\phi}{di} = N\frac{\phi}{I}$

It is expressed in henry.

4 f) Distinguish between paramagnetic and ferromagnetic material with any four points. Ans:

Particulars	Paramagnetic Materials	Ferromagnetic materials
Relative permeability (μ_r)	Very low positive value, slightly greater than one	Very large values ranging from 400 to 1200 etc.
Reluctance	High	Very low
Magnetization	Requires large MMF or can not be magnetized.	Requires low MMF, can be easily magnetized.
Atomic dipole orientation	Very random even with high field strength.	Easy parallel alignment with very low magnetizing current.

1 mark for each of any four points

2 marks

Summer – 2016 Examinations

Subject Code: 17214 (FEE)	Model Answers		Page No: 14 of	
Examples	Copper, Aluminium, Titanium, Platinum,	Iron, Nickel, Cobalt		
1	Oxygen			
Applications	Applications that demand the material which should not be affected by the external magnetic fields.	For making permanent magnets, electromagnets		

5 Attempt any FOUR.

5 a) Give the classification of insulating materials on the basis of state of materials and give one application of each. Ans:

Classification of insulating material on the basis of state of materials:

- 1) Solid insulating materials
- 2) Liquid insulating materials
- 3) Gaseous insulating materials

Sr. No.	Type of Material	Application	
1	Solid insulating materials	Terminal boards, Switch board, Casing- capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipment, Lamp holders, Switches, Plug-sockets	1 mark for applications of each type
2	Liquid insulating materials	Switchgears, Circuit breakers, DC Capacitors, Cables, Transformers	
3	Gaseous insulating materials	Switchgears, Gas Pressure Cables, Circuit breakers, Generator cooling systems, X-ray apparatus	

5 b) Explain constant voltage charging method. (any one) Ans:

Constant voltage charging:

2 marks for diagram

16

20

1 mark for classificatio

n

Summer – 2016 Examinations <u>Model Answers</u>

Page No: 15 of 20

2 marks for explanation

In this method of charging, the charging voltage is kept constant throughout the charging. If the back emf of cell is low, then it results in very large charging current in the beginning and it becomes a small when there is increase in back emf owing to charging. This method has advantage that the time required for charging is almost reduced to half as compared to constant current method.

The charging current can be found by the equation,

$$I = \frac{V - E_b}{R + r}$$

where, E_b is back emf,

V is supply (charging) voltage, R is the external series resistance in circuit,

r is the internal resistance of battery.

5 c) Explain the term self-induced emf with a neat diagram.

Ans:

Self-induced emf:

Self-induced emf is one of the types of statically induced emfs. When the emf induced in the coil is due to the change in its own flux, then it is called as "self-induced emf". Consider a coil wound on the core and supplied from an alternating voltage source as shown in the figure. The alternating current (i) flowing through the coil produces alternating flux in the core. This changing magnetic flux

$$=-N\frac{d\varphi}{dt}$$

The direction of induced emf is given by Lenz's rule. The induced emf always opposes the cause of its production, which is ultimately the supply voltage. Hence the induced emf 'e' is opposite to supply voltage 'v', which is indicated by negative sign in above equation.

5 d) An iron ring with mean circumference of 80cm and cross sectional area 10 cm² is uniformly wound with 500 turns of wire. Determine the current required to set up a flux density of 1.2 T in the ring. Assume $\mu_r = 1000$ for iron.

ρ

n:
$$I = 80 \text{ cm} = 80 \times 10^{-2} \text{ m}$$

 $a = 10 \text{ cm}^2 = 10 \times 10^{-4} \text{ m}^2$
 $N = 500$

$$\mu_r = 1000$$
 $\mu_0 = 4\pi \times 10^{-7}$

The relationship between flux density and magnetizing force (field strength) is given by, $B = \mu_0 \mu_r H$

$$\therefore H = \frac{B}{\mu_0 \mu_r} = \frac{1.2}{4\pi \times 10^{-7} \times 1000} = 3000 \, AT/m$$
1 mark for H
But $H = \frac{NI}{l}$
1 mark for I

2 marks for diagram

2 marks for description

1 mark for data

identificatio n

1 mark for

 eq^n of B

Summer – 2016 Examinations

Page No: 16 of 20

Model Answers

$$\therefore I = \frac{Hl}{N} = \frac{3000 \times 80 \times 10^{-2}}{500} = 4.8 \text{ amp}$$

5 e) Compare Unilateral and Bilateral Circuit.

Ans:

Comparison between Unilateral and Bilateral Circuit:

Unilateral Circuit	Bilateral Circuit	
If the characteristic response or behavior	It is that circuit whose characteritic	1 mark for
of circuit dependents on the direction	response or behavior is independent of	each point
of current through its elements, then the	the direction of current flowing through	
circuit is called as a unilateral circuit.	its elements.	
Impedance offered to current changes	Impedance offered to current is same for	
with the direction of current.	both the directions of current.	
Power flow is affected by the direction	Power flow is not affected by the	
of current.	direction of current.	
Circuits containing elements likes	Transmission line, circuits containing	
diodes, transistors, thyristors etc.	only resistor etc.	

5 f) The field coil of a generator has 14.1 Ω at 25°C and 18.2 Ω at 32°C. Find the temperature coefficient of resistance at 0°C and resistance at 0°C. Ans:

Given: R_{25} = Resistance of the coil at 25°C = 14.1 Ω

 R_{32} = Resistance of the coil at $32^{\circ}C = 18.2\Omega$ The resistance at t°C is given by,

.

and

Dividing equation (1) by (2), we get 14.1 $R_0(1 + \alpha_0 \times 25)$ 1 mark for $\frac{18.2}{18.2} - \frac{1}{R_0(1 + \alpha_0 \times 32)}$ this $14.1(1 + \alpha_0 \times 32) = 18.2(1 + \alpha_0 \times 25)$ formulation $14.1 + 451.2\alpha_0 = 18.2 + 455\alpha_0$ $455\alpha_0 - 451.2\alpha_0 + 18.2 - 14.1 = 0$ $3.8\alpha_0 = -4.1$ $\alpha_0 = -1.0789 \ per \ ^{\circ}C$ 1 mark

Putting the value of
$$\alpha_0$$
 in equation (1),
 $14.1 = R_0(1 + (-1.0789) \times 25) = R_0(1 - 26.973) = -25.97R_0$
 $\therefore R_0 = -\frac{14.1}{25.97} = -0.542\Omega$ 1 mark

6 Attempt any FOUR.

Page No: 17 of 20

6 a) Define Ideal voltage source and Practical voltage source. Draw it's symbol and characteristics.

Ans:

Subject Code: 17214 (FEE)

i) **Ideal voltage source:** A voltage source whose terminal voltage always remains constant for all values of output current, is known as an ideal voltage source. It has zero internal resistance.

¹/₂ mark for each symbol

¹/₂ mark for each characteristi c

ii) **Practical voltage source**: A voltage source whose terminal voltage falls with the increase in the output current due to the voltage drop in the internal resistance.

6 b) Using Kirchhoff's laws calculate current through 10Ω .

Ans:

(NOTE: There are no. of ways and options for selection of loops for writing the voltage equations based on KVL. So Examiner is requested to allot the marks as per the steps followed)

Step I: Mark the currents on the diagram and points for easy identification.

1 mark for each step

Summer – 2016 Examinations Model Answers

Page No: 18 of 20

Step II: Write KCL and KVL based equations By KCL at node C, the current flowing through the resistance of 10Ω is given by, $I_3 = I_1 + I_2$ For loop ABCDEFA, by KVL we write $(1)I_1 + 10(I_1 + I_2) = 20$ For loop FCDEF, by KVL we write $(2)I_2 + 10(I_1 + I_2) = 50$ Step III: Solving simultaneous equations Multiplying $eq^{n}(1)$ by 10 and $eq^{n}(2)$ by 11, we get $110I_1 + 100I_2 = 200 \dots (3)$ $110I_1 + 132I_2 = 550 \dots (4)$ Subtracting $eq^{n}(3)$ from $eq^{n}(4)$, we get $32I_2 = 350$ Substituting $eq^{n}(5)$ from $eq^{n}(1)$, we get $11I_1 + 10(10.94) = 11I_1 + 109.4 = 20$ $11I_1 = 20 - 109.4 = -89.4$ **Step IV:** Final answer The current through 10Ω resistance is, $I_3 = I_1 + I_2 = (-8.13) + 10.94$ \therefore $I_3 = 2.81A$ flowing from D to E

- 6 c) State Kirchhoff's Current Law and Voltage Law. Ans:
 - i) **Kirchhoff's current law**: It states that in any electrical circuit, at any node or junction, the algebraic sum of currents is equal to zero.

OR

At any node or junction in an electric circuit, the total incoming current is equal to the total outgoing current

i...e
$$\sum I = 0$$

ii) Kirchhoff's voltage law: - It states that in any closed circuit or mesh, the algebraic

1 mark

	Subject Code: 17214 (FEE)	Summer – 2016 Examina <u>Model Answers</u>	tions Page No:	19 of 20
	sum of all the emfs and the In any closed loop or mesh, i.e. $\Sigma \text{ emf} + \Sigma \text{ IR} = 0$	voltage drops (IR) is equal t OR the total voltage rise ie equa	to zero. al to the total voltage drop.	1 mark 1 mark
6	 d) i) State Fleming's right hand rule. Ans: Flemings Right hand rule: Fleming's right hand rule states three fingers of your right ha mutually perpendicular to each (first finger) indicates the direct thumb indicates the direction of then second (middle) finger induced emf and hence current in 	that stretch out the first and such that they are other, if the forefinger ction of magnetic field, of motion of conductor, gives the direction of a the conductor.	field intit case on p	2 marks for statement (diagram is optional)
6	 d) ii) Define mutual inductance and sta Ans: Mutual inductance: Mutual inductance is defined as induced in one coil when current Its unit is henry. 	ate its unit. The property of coupled contain other coil changes.	oils due to which an emf is	1 mark for definition 1 mark for unit
6	e) i) Define AH efficiency and Watt- Ans: AH efficiency: Ampere-hour efficiency of a ba amp-hr during discharging to the $\eta_{Ah} = \frac{I_d T_d}{LT}$	Hr efficiency of a battery. ttery is defined as the ratio input amp-hr of battery during $-hours during discharged amp - hours during charged amp - hours during charged and the second second$	o of the output of battery in ring charging. ring particle of the second	1 mark
	where, I_d be the discharge current T_d be the time of discharge I_c be the charging current T_c be the time of charging Watt – Hr efficiency : The ratio the input required to restore the in- called Watt-hr efficiency. $\eta_{Wh} = \frac{I_d T_d V_d}{I_a T_a V_a} = \eta_{Ah} \frac{V_d}{V_a}$	it, ge, g o of the output of a battery, nitial state of charge, under watt hours during dischar watt hours during charg	measured in Watt-hours, to specified conditions, is <u>ge</u>	1 mark

 V_c where, V_d be the average potential difference (voltage) of battery during discharge, V_c be the average potential difference (voltage) of battery during charging.

6 e) ii) State applications of storage batteries.

			Summer – 2016 Examinations		
Su	ıbject C	ode: 17214 (FEE)	Model Answers	Page No:	20 of 20
	Ans				
	Annli	cations of storage batte	eries:		
	Following are the applications of storage batteries.				
	1) Broadcasting stations.			$\frac{1}{4}$ mark for	
2) Transmission and distri			ribution substations.		each of any
	3) Telephone and telegraphic services.				four
	4)	Emergency lighting fo	r hospitals, shops, banks etc.		
	5)	Automobiles.			
	6)	Solar street lights			
	7)	Railway signaling syst	tem		
	8)	UPS systems			
	9)	Marine and submarine	applications		
6 f)	State	the applications of follow	wing materials:		
	i)	CRGO silicon stee			
	11	HRGO silicon stee			
	111) Amorphous metals			
	IV Ans:) DIOIIZE			
	Ans.	cations of various mat	arials		
	i)	CRGO silicon steel:			1 mark for
	-)	a) Manufacturing distr	bution and power transformer cores.		any two
		b) Manufacturing core	es of audio transformers, ballast transformers	nsformers, speciality	applications
		transformers.			of each
		c) Manufacturing core	es of large transformers, generators and	d motors.	
		d) Manufacturing state	or and rotor of waterwheel generators.		
		e) Manufacturing state	or and rotor of turbo generators		
	ii)	HRGO silicon steel:			
		a) Manufacturing core	es of small rating transformers		
		b) Manufacturing core	es of small rating induction motors		
		c) Manufacturing wate	er-wheel generators		
	•••	d) Manufacturing turb	o generators		
	III)	Amorphous Metals:	sites for field electron emission devis		
		a) Making nanocompo	os of high officional distribution transf	formors	
		c) Manufacturing core	es of special transformers	loimers	
		d) Manufacturing mag	s of special transformers		
		e) Magnetomotive sen	sors		
	iv)	Bronze:			
)	a) Making brush holde	ers		
		b) Making knife switch	h blades		
		c) Making current carr	rying springs, bushings.		
		d) For extremely long	er spans of overhead transmission lir	nes, phosphor bronze	
		conductors are used	l.		
		e) Cadmium bronze is	used for making commutator segmen	its and contact wires.	