

Subject Code: 17211

Summer-2014 Examination Model Answer : Applied Science (Chemistry)

Page No: 1/12

 Important Instructions to examiners: The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept.

Subject Code: 17211

Page No: 2/12

Que. No.	Sub. Que.		Model Answ	rer	Marks	Total Marks
1.	Que.	Attempt any nine:				18 18
	a)	Name any two ores				2
		Type of ore Nar		Chemical formula	1	
		-	orite or ruby copper	Cu ₂ O		
		-	per glance	Cu ₂ S	Mark	
			pper pyrite	CuFeS ₂	each	
			achite	CuCO ₃ ,Cu(OH) ₂		
		Azu		2CuCO ₃ ,Cu(OH) ₂		
		(Any two names w	vith formula: 1 mar	k each)		
	b)	Give chemical read		onc. Hydrochloric		2
		acid(conc.HCl) on		e concentrated hydrochloric		
			•	volution of hydrogen gas	1	
				,	1	
		2Al + 6 H	$Cl \longrightarrow 2 Al$	$ C _3 + 3 H_2$	1	
	c)	Write any four use	es of copper.			2
	- /	Uses of copper:	1 . 11 0	1		
		_		onducting apparatus.		
		•	ornaments & utensil	8.		
		3. Making jewelle	•	n pans, steam pipes, fire		
		boxes of locom		n pans, steam pipes, me	1/2	
				posometer, colorimeter	Mark	
		6. Electro plating,		posonieter, coronnieter	each	
		1 0	••••••	ecticides & colouring		
		materials.	e largery abea ab lins			
			oys like brass, bronz	e, gun metal etc		
		(Any Four)	<i>,</i>			
						-
		· · · ·		example of each type.		2
	d)	Types of corros		Example		
		Atmospheric Or D	Ŭ		1	
		chemical Or Dry		of green film on the		
		corrosion Electrochemical O	surface of co			
		Immersed Or Wet		fencing wire under joints. of steel pipe connected to	1	
		Corrosion	copper plum		1	
		Corrosion		of lead antimony solder	Mark	
			around the co	•	each	
				of steel screws in marine	each	
			brass hardwa			
				of iron nails which are		
				copper sheets		
		(Types- 1mar	k , Examples -1m	* *		

Su	bject C	Summer-2014 ode: 17211	Page No.	o: 3 /12	
Que. No.	Sub. Que.	Model	Answer	Marks	Total Marks
1.	e)	Mention the types of oxide film corrosion. Which film is protect Types of oxide films- 1. Stable porous oxide film 2. Stable non porous oxide film 3. Unstable oxide film 4. Volatile oxide film	tive.	1	2
		Stable nonporous oxide film of protective.		1	
	f)	"Tin coated utensils are more p for storing food stuffs." Explain Zinc coated utensils are not used zinc is a active metal hence it read acids present in the food stuffs to which spoils the food. Tin coated utensils are used for s is a less active metal and hence de	1. for storing food stuffs because dily react with the weak organic form poisonous zinc compounds storing the food stuffs because tin	1	2
	g)	 sheet is covered by a thin layer of zinc metal which protect the base metal from corrosion 3 This process is carried out in a large tanks by dipping iron sheet in a bath of molten zinc at a temperature of about 425-460^o C 4 This process is widely used for 	etween galvanizing & sherardizing 1 It is process of coating small iron or steel articles by alloying at surface with zinc metal 2 In sherardizing surface of iron or steel article is covered by a Zinc- iron alloy layer which protect the base metal from corrosion 3 This process is carried out in a constantly rotating drum by packing the small iron or steel article in zinc powder at a temperature of about 350 -400 ^o C 4.This process is used for protecting small & irregular iron articles like bolts, screws,nails, nuts etc.	1 Mark each	2
	h)	Mention two applications of hydro Applications of hydrogen –oxygen 1. Used in Space shuttles, Space Stat 2. Remote, off-grid locations (teleco 3. Public, industrial, Marine and M 4. They can be used in small persona 5.By product i.e. water can be used f (Any two applications)	fuel cell tions. m towers, weather stations). ilitary transportation. al vehicles.	1 Mark each	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer-2014 Examination

Page	No:	4/12

1		81		
Sub. Que	Model	Answer	Marks	Total Marks
<u>Que.</u> i)	Write discharging reactions in Discharging: - While discharging of into electrical energy. At anode: - 1 The lead electrode loses electron $Pb \longrightarrow Pb^{2+} + 2e^{-}$ 2 The Pb^{2+} ions then reacts with su sulphate. $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4 + 2e^{-}$ The electrons released from the an electrode. At cathode:- 1Lead oxide undergoes reduction $PbO_2 + 4 H^+ + 2e^{-} \rightarrow Pb^{2+} + 2H_2O$ 2 The Pb^{2+} ions then reacts with su sulphate. Pb ²⁺ + SO_4^{2-} \rightarrow PbSO_4	lead acid storage cell chemical energy gets converted as, which flow through the wire. Alphate $SO_4^{2^-}$ ions to form lead ode flow to the cathode reaction in presence of H^+ ions	Marks 1 1	Iotal Marks 2
j)	Pb + PbO ₂ + 4H ⁺ + SO ₄ ²⁻ → 2PbS Lead sulphate is precipited at bot acid is utilized & H ₂ O is formed H ₂ SO ₄ decreases. What is difference between diel Dielectrics 1. The materials which are used to prevent the loss of electricity through certain parts	SO4 + 2H2O + Energy th the electrodes. As sulphuric in the process, concentration of ectrics and insulator. Insulators 1. Insulators or insulating materials are the substances which retard the flow of heat or		2
	of an electrical system are known as dielectrics 2.The main function is storage of electrical charge. 3. All dielectrics are insulators because they avoid the flow of electric current through them. 4. Examples- Air, N ₂ gas , CO ₂ gas, Silicon fluid etc (Any two points)	electricity or sound through them 2. The main function of such materials is that of insulation 3.All insulators are not dielectrics because they can not store charges like dielectrics 4. Examples- Rubber, Plastics etc.	1 Mark each	
k)	Adhesives- Any substance which materials together by surface attact Examples- 1 Epoxy resins 2 Urea formaldehyde 3 Phenol formaldehyde	is capable of holding the hment is called as an adhesive. de	1	2
	Sub. Que. i)	 Que. Model. i) Write discharging reactions in Discharging: - While discharging of into electrical energy. At anode: - 1 The lead electrode loses electron Pb→Pb²⁺ + 2e⁻ 2 The Pb²⁺ ions then reacts with su sulphate. Pb²⁺ + SO₄²⁻ → PbSO4 + 2e⁻ The electrons released from the an electrode. At cathode:- 1Lead oxide undergoes reduction PbO2 + 4 H⁺ + 2e⁻ → Pb²⁺ + 2H2O 2 The Pb²⁺ ions then reacts with su sulphate. Pb²⁺ + SO₄²⁻ → PbSO4 Net reaction during Discharging Pb + PbO2 + 4H ⁺ + SO₄²⁻ → 2PbS Lead sulphate is precipited at bot acid is utilized & H₂O is formed H₂SO₄ decreases. j) Dielectrics 1. The materials which are used to prevent the loss of electricity through certain parts of an electrical system are known as dielectrics 2. The main function is storage of electrical charge. 3. All dielectrics are insulators because they avoid the flow of electric current through them. 4.Examples- Air, N₂ gas , CO₂ gas, Silicon fluid etc (Any two points) k) Define adhesives. Give two exam Adhesives- Any substance which materials together by surface attact Examples - 1 Epoxy resins 2 Urea formaldehyde 3 Phenol formaldehyde 3 Phenol formaldehyde 	Sub. Que. Model Answer i) Write discharging reactions in lead acid storage cell Discharging: - While discharging chemical energy gets converted into electrical energy. At anode: - 1 The lead electrode loses electrons, which flow through the wire. Pb→Pb ²⁺ + 2e ⁻ 2 The Pb ²⁺ ions then reacts with sulphate SO ₄ ²⁻ ions to form lead sulphate. Pb ²⁺ + SO ₄ ²⁻ → PbSO ₄ + 2e ⁻ The electrons released from the anode flow to the cathode electrode. At cathode:- I cad oxide undergoes reduction reaction in presence of H ⁺ ions PbO ₂ + 4 H ⁺ + 2e ⁻ →Pb ²⁺ + 2H2O . 2 The Pb ²⁺ ions then reacts with sulphate SO ₄ ²⁻ ions to form lead sulphate. Pb ²⁺ + SO ₄ ²⁻ → PbSO ₄ Pb ²⁺ + SO ₄ ²⁻ → PbSO ₄ Net reaction during Discharging: - Pb + PbO ₂ + 4H ⁺ + SO ₄ ²⁻ → 2PbSO ₄ + 2H ₂ O + Energy Lead sulphate is precipited at both the electrodes. As sulphuric acid is utilized & H ₂ O is formed in the process, concentration of H ₂ SO ₄ decreases. j) Dielectrics Insulators i. The materials which are used to prevent the loss of electricity through certain parts of an electrics 1. Insulators or insulating materials are the substances via electrical system are of electric current through them. 3. All insulators are not dielectrics because they avoid the flow of electric current through them. 2.The main function is storage of electric current through them. 3. All insulators are not dielectrics because they can not electric current through them. 3. All insulators are not	Sub. Que.Model AnswerMarksi)Write discharging reactions in lead acid storage cell Discharging: - While discharging chemical energy gets converted into electrical energy. At anode: - 1 The lead electrode loses electrons, which flow through the wire. $Pb \rightarrow Pb^{2+} + 2e^{-}$ 2 The Pb ²⁺ + 2e^{-} 2 The Pb ²⁺ + 2e^{-} 2 The Pb ²⁺ + 2e^{-} The electrons released from the anode flow to the cathode electrode. At cathode: - 1 Lead oxide undergoes reduction reaction in presence of H* ions PbO+ + H* + 2e^{-} $Pb^{2+} + 2BO$. 2 The Pb ²⁺ + SO ₄ ²⁻ \rightarrow PbSO4 + 2e- The electrons released from the anode flow to the cathode electrode. At cathode: - 1 Lead oxide undergoes reduction reaction in presence of H* ions PbO+ + H* + 2e^{-} $Pb^{2+} + 2HO$. 2 The Pb ²⁺ + SO ₄ ²⁻ \rightarrow PbSO4 Net reaction during Discharging: - Pb + PbO2 + 4H * SO ₄ ²⁻ \rightarrow 2PbSO4 + 2HzO + Energy Lead sulphate is precipited at both the electrodes. As sulphuric acid is utilized & H ₂ O is formed in the process, concentration of H ₂ SO ₄ decreases.1j)Dielectrics 1. The materials which are used to prevent the loss of electricity drough certain parts of an electrical system are hem1. Insulators or insulating materials are the substances which retard the flow of heat or electric current through them. Solielectrics are insulators1i. The main function is storage of electricic charge. as, Silicon fluid etc (Ary two points)3.All insulators are not dielectrics etakemples - Rubber, Plastics etc.1k)Define adhesives. Give two examples of it Adhesives. Any substance which is capable of holding the materials together by surface attachment is called as an adhesive. Examples - 1 Epoxy resins 2 Urea formaldehyde

Subject Code: 17211

Page No: 5 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.	1)	 Mention two applications of electrically conducting polymers Applications of Electrically conducting polymers :- 1 They are used in rechargeable batteries 2 They are used as analytical sensors to detect pH, O₂ ,NO₂, SO₂,NH₃, Glucose etc 3. They are used as antistatic materials in offices, theatres etc. 4. They are used as electro chromic materials 5. They are used in optical filters to absorb radiations from computer, T.Vscreens. 6. They are used for photo diodes, light emitting wall papers, light emitting diodes &data storage 7. They are used in construction of photo voltaic cell (Any two Applications) 	1 Mark each	2
	m)	 State two applications of liquid crystal polymers Mechanical parts, food-containers Used in telecommunication & optical fibres In electrical & electronic applications. Transport, automotive & military applications. Aircraft & aerospace applications. Chemical & consumer applications. 	1 Mark each	2
2.		Attempt any <u>FOUR</u>		16
	a)	Describe the process of smelting of copper ore with labelled diagram		4
		Charging pipe Fire bricks Water jacket Air blast main Fusible slag out Motten matte out	1	

Subject Code: 17211

Page No: 6/12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	Que.	Roasted copper ore is then mixed with coke & sand particles &	1	IVIALKS
		then strongly heated at about 1350° Cin a water jacketed blast furnace. At high temperature ferrous sulphide (FeS) is oxidised & converted into ferrous oxide (FeO) which further reacts with sand particles to form a fusible slag (FeSiO ₃) 2FeS +3O ₂ \longrightarrow 2FeO + 2SO ₂ \uparrow FeO + SiO ₂ \longrightarrow FeSiO ₃ Further cuprous oxide (Cu ₂ O) formed during roasting combines	1	
		with ferrous sulphide (FeS) to form ferrous oxide (FeO) & cuprous sulphide (Cu ₂ S). The ferrous oxide (FeO) formed futher react with silica particulas to form slag. Cu ₂ O + FeS \longrightarrow FeO + Cu ₂ S Thus during smelting process most of the ferrous sulphide impurity is converted into the fusible slag (FeSiO ₃)which is then removed from the upper slag outlet. The molten mass containing mostly cuprous sulphide (Cu ₂ S) & little quantity of ferrous sulphide (FeS) is called as matte which is then removed from the lower outlet.	1	
	b)	What is the role of cryolite in electrolytic reduction of alumina.Explain the process. Role Of Cryolite:- The pure alumina is bad conductor of electricity & its melting point is 2000 [°] c . Hence electrolytic reduction of alumina is carried out in presence of cryolite because the presence of cryolite decreases the melting point of alumina & also increases its electrical	1	4
		conductivity.	1	
		 Process: Figure shows electrolytic reduction of alumina(Al₂O₃) i. Alumina is dissolved in fused cryolite and electrolyzed in an iron tank lined inside with carbon which acts as cathode ii. The anode consists of number of carbon rods, suspended vertically from the copper clamps. iii. The electrolyte is a mixture of alumina (20%), cryolite (60%) and calcium fluoride (20%). iv. The temp of both is kept at about 900-1000c v. On passing current, alumina decomposes to aluminium and oxygen. 	2	

		Summer-201	<u>4</u> Examination		
Subje	ct Code	: 17211	Page No:	7 /12	
Que.	Sub.	Mode	el Answers		Total
No.	Que.			Marks	Marks
2	~ ~ ~	$2 \text{ Al}_2 \text{O}_3 =$	\rightarrow 4Al + 3O ₂		
-			ks to the bottom (cathode), while		
		oxygen appears at anodes gets			
			and fresh quantity of Al2O3 is		
		added time to time.	1 5		
	c)	Write composition propertie	a and applications of rase		
	C)	Write composition propertie metal	s and applications of rose		
		Composition: $Bi = 50\%$		2	4
		Pb = 28%			
		Sn = 22%			
		Properties:			
		1.It is easily fusible alloy.		1	
		2. Its melting point is 89° C			
		Applications:			
		1.It is used for making fire –	alarms.	1	
		2 It is used in electrical fuse	wires,	1	
		3. It is used for casting for de	ental works		
		4. It is used in automatic spr	inkler system.		
		(Any two applications)			
	d)	Write two properties and tw	o uses of Bakelite.		
	u)	Properties	Uses		4
		Hard,Rigid,strong,scratch	insulation of electrical wires		4
		resistant & brittle material.	& cables electrical switches,		
			switch board sockets, plugs		
			for handles of iron & heaters	1	
		Excellent heat & moisture	Moulded articles like		
		resistant.	telephone parts, cabinets for	Mark	
			radio & television.	_	
		Resistance to chemical and	used as adhesive for	each	
		fire.	grinding wheels & brake		
			linning.		
		Good electrical insulation	hydrogen exchanger resin in		
		property High Abrasian resistance	water softening.		
		High Abrasion resistance.	Paints, Varnishes, Bearings		
		Lower Molecular grades	Propellers, Shafts for paper		
		have excellent bonding strength	industry		
		High Adhesive property.	Rolling mills, Decorative		
		Ingh Addesive property.	laminates wall covering &		
			industrial laminates for		
			electrical parts.		
		L	r		
		(Any two properties: 2 Mark	ks & any two uses: 2 Marks)		
L	ı – – – I	· · · · · · · · · · · · · · · · · · ·	v/		•

Subject Code: 17211

Page No: 8/12

Que.	Sub.	Model	Answer	Marks	Total
No.	Que.	woder		IVIALKS	Marks
2.	e	Differentiate between primary			4
		Primary cell	Secondary cell		
		1. Non- rechargeable cells are	1. Rechargeable cells are		
		known as primary cells	known as secondary cells.	1	
		2. Chemical reaction is	2. Chemical reaction is	1	
		irreversible.	reversible.	Mark	
		3. They are light in weight.	3. They are heavy.		
		4. They have short life.	4. They have long life	each	
		5. They can not be recharged &	5. They can be recharged &		
		reused.	reused.		
		6. e.g Dry cell, Daniel cell,	6. e.g.Lead acid storage cell,		
		Leclanche cell	Nickel- cadmium storage cell		
		(Any four points)			
	f)	Explain construction and work	ing of Dry cell with diagram.		
	, יי	r i i i i i i i i i i i i i i i i i i i			4
			Metallic cap		-
			e terrente terrente		
			Sealing material	1	
		Wet paste of	Graphite rod		
		NH ₄ Cl + ZnCl ₂	Cardboard cover		
		Wet paste of ground carbon,	Zinc container		
		MnO ₂ and water in muslin cloth			
		Construction:			
			er (vessel) which acts as an anode.		
		ii) Cathode is a Graphite rod. It a			
		Graphite rod is surrounded by a pa			
		dioxide) & powdered Carbon (Bla	ick) and water placed in muslin	1	
		cloth.			
		iii)The cell is filled with a paste of	1 1		
		water. The cell is sealed at the top	by wax or resin.		
		Working			
		At zinc anode: -			
		Dissolution of zinc electrode to fo			
		$Zn \longrightarrow Zn^{++} + 2e^{-1}$ (oxidation	*		
		Z_{n++} combines with ammonia to			
		$Zn^{2+} + 4 NH_3 \rightarrow (Zn (NH_3)_4)^+$		1	
		At the graphite cathode: -	ad in process of NUL +		
		Manganese dioxide (MnO2) reduc			
		(ammonium) ions to form Mn ₂ O ₂	3 & noerate ammonta.		
L	L	1		1	1

Subject Code: 17211

Page No: 9/12

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
2.		2NH ₄ ⁺ + 2 MnO ₂ + 2 e ⁻ → Mn ₂ O ₃ + H ₂ O + 2NH ₃ ↑ Ammonia thus produced is liberated as a gas but it combines with Zn ²⁺ to form a [Zn (NH ₃) ₄] ²⁺ ions complex at the zinc anode. The cell develops a potential 1.5 volts.	1	
3.	a)	Attempt any four Describe the mechanism of electrochemical corrosion by evolution of hydrogen		16 4
		H ₂ H ₂	1	
		Steel tank: - Anode Cu – strip:- Cathode These types of corrosion occur usually in acidic environments like industrial waste, solutions of non – oxidizing acids. A steel tank containing acidic industrial waste and small piece of copper scrap in contact with steel. The portion of the steel tank in contact with copper is corroded most with the evolution of hydrogen gas. Reactions:	1	
		At Anode: Fe \longrightarrow Fe ⁺⁺ + 2 e ⁻ These electrons flow through the metal from anode to the cathode At cathode	1	
		H ⁺ ions are eliminated as H ₂ gas 2H ⁺ + 2 e ⁻ → H ₂ ↑(Reduction) Thus, over all reaction is Fe + 2H ⁺ → Fe ⁺⁺ + H ₂ ↑ [Note: 1mark each to be given to reaction at anode & cathode.]	1	
	b)	 Explain the factors affecting rate of atmospheric corrosion Factors affecting atmospheric corrosion:- 1) Impurities in the atmosphere:- Corrosion rate is fast in the presence of all impurities such as H₂S, SO₂, CO₂, Cl₂, gases along with vapors of HCl & H₂SO₄ etc. Atmospheric air in industries areas contains these impurities. 2) Mointure in the atmosphere: 	2	4
		2) Moisture in the atmosphere:- Atmospheric gases & chemical vapours dissolve in moisture and reaction between such dissolved gases and metal becomes faster. Therefore moisture acts as conducting medium and enhances the corrosion.	2	

Subject Code: 17211

Page No: 10/12

Que.	Sub.	Model Answer	Marks	Total
No.	Que.			Marks
3.	c)	Name the method is used for the protection of irregular surface of metal? Explain it with diagram.	1	4
		Method: Used for protection of irregular surfaces is metal spraying .	1	
		Process:- In this method ,coating metal sprayed on the surface of base metal with the help of spraying gun or pistol. The spraying gun consist of a duct for compressed air and is fitted with the oxy-hydrogen flame. The coating metal in the form of wire is fed into the gun which is then melted inside the gun with the help of oxy hydrogen flame. The molten metal then sprayed on the surface of base metal with the help of compressed air.	2	
	d)	Define: 1 Specific conductance 2 Equivalent conductance 3 Electrolytic cell 4 Electrochemical cell Specific conductance (k) : Specific conductance is the conductance of a 1 cm ³ of the substance or solution. OR The conductance offered by a solution of length 1 cm & area of unit cross section is known as specific conductance.	1	4
		Equivalent conductance $(\lambda \mathbf{v})$: It is the conductance of the solution containing 1 gm equivalent of solute / electrolyte when placed between two sufficiently large electrodes 1 cm apart.	1	
		Electrolytic cell : A cell which converts electrical energy into chemical energy is known as electrolytic cell.	1	
		Electrochemical cell A cell which converts chemical energy into electrical energy is known as electrolytic cell	1	

Subject Code: 17211

Page No: 11/12

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
<u> </u>	e)	Explain construction and working of Ni-Cd cell with diagram.		4
		OR	1	
		(+) Positive terminal Separator Cadmium anode NIO (OH) cathode		
		Construction: Positive plates are made up of nickel plated tubes, containing a mixture of nickel oxide (NiO ₂) & hydroxide + 17% flakes of graphite or metallic nickel for increasing conductivity. They also contain an activated additive 2% Ba(OH) ₂ which increases the life of plates. Negative plates consist of spongy Cadmium. The electrolyte is 20- 15% solution of KOH to which small quantity of lithium hydroxide (LiOH) is added to increase the capacity of cell.	1	
		Working: A) Discharging:- Positive Plate: $NiO_2(s) + 2H_2O(l) + 2e \longrightarrow Ni (OH)_2 (s) + 2OH^-$ Negative Plate: $Cd (s) + 2OH^-(aq) \longrightarrow Cd (OH)_2(s) + 2e^-$ Net reaction: $NiO_2 (s) + Cd(s) + 2H_2O \longrightarrow Ni(OH)_2 + Cd(OH)_2$	1	
		B) Charging:- Positive Plate: $Ni(OH)_2(s) + 2OH^-(a) \longrightarrow NiO_2(s) + 2H_2O + 2e^-$ Negative Plate: $Cd(OH)_2(s) + 2e^- \longrightarrow Cd(s) + 2OH(s)$ Net reaction: $Ni(OH)_2 + Cd(OH)_2 \longrightarrow NiO_2(s) + Cd(s) + 2H_2O$ Thus, discharging & charging reactions can be shown simultaneously as: - $NiO_2(s) + Cd(s) + 2H_2O \longrightarrow 2Ni(OH)_2 + Cd(OH)_2$	1	

Subject Code:17211

Page No: 12/12

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
3	f)	Explain construction and working of Daniel cell	1	4
		Construction:- It consists of zinc electrode dipped in ZnSO ₄ Solution & Copper electrode dipped in CuSO ₄ solution. The two solutions are separated by a porous pot. The two solutions can seep through the pot & so comes in contact with each other automatically. Thus, porous partition acts as a salt bridge.	1	
		Working:- The tendency of Zn to form Zn^{++} is greater than the tendency of Zn^{++} to get deposited as Zn on the electrode. Therefore Zn goes into the solution forming Zn^{++} . On the other hand tendency of Copper to go into the solution is less than the tendency of Cu^{++} to get deposited as Cu & hence copper electrode becomes positively charged. The emf of cell is 1.1 volt. Cell reactions-	1	
		At Anode At Cathode Zn $Cu^{++} + 2e^- \longrightarrow Cu$ Net Reaction $Zn + Cu^{++} \longrightarrow Zn^{++} + Cu$	1	