

Subject Code: 17208

WINTER- 14 EXAMINATIONS Model Answer

Page No: 1/13

Applied Chemistry

No. (Sub. Que.	Model Answer	Marks	Total Marks
		 Model Answer Important Instructions to examiners The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given by io any other program based on equivalent concept. 	Marks	

Subject Code: 17208

Page No: 2/13

Que. No.	Sub. Que.		Model Answer		Marks	Total Marks
1.		Attempt any NINE of	the following:			18
	a.	Name the type of meta Aluminum metal. Stable Non-porous (pro corrosion by Aluminum	otective) metal oxide fi		2	2
	b)	Write two uses of slag	T			
		 It is used as filler for It is used in the man It is used as a fertiliz (Note: Write any two 	rail roads. ufacturing of cement fo zer & for soil condition	U	1 mark each	2
	c)	Explain why steel is to	empered after quench	ing.		2
		Steel which is taken o & brittle & has unequ tempering is done.	ut of quenching mediu	m becomes very hard	2	
	d)	Explain the function of	of gypsum in Portland	l cement.		
		To avoid early initial set, gypsum is added in cement. The added gypsum decreases the dissolution of C_3A by forming insoluble calcium sulpho-aluminate which does not have quick hydration property. $C_3A + H_2O + CaSO_4. 2H_2O \rightarrow C_3A. CaSO_4. 2H_2O + Heat.$ This reaction prevents a high concentration of alumina in the cement solution & decrease the early initial set of the cement.				2
	e)	Name two ores of iror	n with chemical formu	ıla.		2
		Type Oxide Carbonate	Name Magnetite Haematite Limonite Siderite	Molecular formula Fe ₃ O ₄ Fe ₂ O ₃ 2Fe ₂ O ₃ . 3 H ₂ O FeCO ₃	½ mark each	
		Sulphide	Iron pyrite	FeS ₂		
		(Note: Write any two	**			

Subject Code: 17208

Page No: 3 /13

Que.	Sub.	Model Answer	Marks	Total
No. 1.	Que.			Marks
	f)	List two causes of formation of boiler scale.		2
		1) Chemical Decomposition-Calcium bicarbonate & Magnesium		2
		bicarbonate decomposes at higher temperature to form insoluble	1	
		carbonates which precipitates to form scale.	mark each	
		$Ca(HCO_3)_2 \longrightarrow CaCO_3 + H_2O + CO_2$	cuerr	
		Scale		
		2) Decrease in solubility of salts – Some salts present in hard water becomes insoluble at higher temperature.		
		e.g. CaSO ₄ , CaSiO ₃ , MgSiO ₃ .		
		These salts form hard scale at high temperature.		
	g)	Name two constituents of paint and one function of each.		2
		1) Pigments	1	2
		Functions:-	mark each	
		1) Provide opacity and colour to paint film.	cacii	
		2) Give strength to the film.		
		3) Give protection to the paint film		
		4) Provide resistance to paint film against abrasion, moisture and		
		weather.		
		2) Drying Oil / Medium		
		Functions:-		
		1) It is a main film forming constituent.		
		2) it provides durability and water proofness to the film.		
		3) It improves toughness and adhesion of the paint film.4) It forms protocting film by evidetion		
		4) It forms protective film by oxidation.		

Subject Code: 17208

Page No: 4/13

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		ivitari No	Marks
1	g)	3) Thinners		
		Functions:-		
		1) They are suspended pigments.		
		2) They dissolve film forming materials.		
		3) They reduce viscosity of paints for proper handling and to		
		impart better covering power.		
		4) They help the drying of film by evaporation.		
		4) Driers		
		Functions of driers:		
		1) They improve drying quality of paint film.		
		2) They act as oxygen carrier catalysts.		
		3) They accelerate the drying of oil film.		
		5) Extenders		
		Function:-		
		1) They reduce the cost of paint.		
		2) They increase durability of paint.		
		3) They help to reduce the cracking of dry paint.		
		4) They acts as carriers for pigmented colour.		
		6) Plasticizers		
		1) To give elasticity to the film.		
		2) To prevent cracking of the film.		
		(Note: Write any two points)		
	h)	Explain why we have to take more care during slaking of quick lime.		2
		We have to take more care during slaking of quick lime because large amount of heat is evolved and lumps of it burst with explosive force as the steam generated escapes.	2	

Subject Code: 17208

Page No: 5 /13

Que. No.	Sub. Que.	Model	Answer	Marks	Total Marks
1.	i)	Explain metal cladding. Give its	limitations.		2
		Metal cladding involves bonding f	firmly and permanently, a dense	1	
		homogenous layer of a coating me	etal to the base metal on one or		
		both sides.			
		Limitations: 1) By this method	od only plane surfaces can be	1	
		protected.			
		2) If cladding is not perfect the in	regular surfaces provide galvanic		
		cell action in presence of mo	bisture so corrosion cannot be		
		prevented.			
	j)	Explain why chlorination is used	l for stabilization of water in		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Army.		2	2
		Chlorination is used for stabilizati	on of water in Army because Cl ₂	_	_
		reacts with water to produce hypo	•		
			isms, removes irritating smell and		
		gives good taste to water.			
	k)	Galvanizing	Sherardizing		
		1) It is the process of coating	It is the process of coating	1	2
		iron or steel sheets with a thin coat of Zn by hot dipping.	small iron or steel article by alloying at the surface of base	mark	
			metal (iron)	each	
		2) This process is carried out in large tanks by dipping iron	This process is carried out in rotating closed drum like		
		sheet in a bath of molten Zinc	furnace by packing the small		
		at a temp of about $425 - 460^{\circ}$ C	iron or steel article in Zinc		
		by covering the bath with a flux of NH ₄ Cl.	powder at a temp of about 350 -400° C in reducing		
		nux of render.	atmosphere.		
		3) In galvanizing a layer of Zn	In sherardizing Zinc gets		
		- Fe alloy is formed to which the outer layer of Zinc sticks.	diffused into iron forming Fe – Zn alloy at the surface only.		
			(Continued on next page)		
			(Continued on next page)		

Subject Code: 17208

Page No: 6/13

Que. No.	Sub. Que.	Model Answers		Marks	Total Marks
	1)	for protecting iron exposed to the atmosphere as in the case of roofs, wire fences, pipes & fabricated articles from galvanized sheets like buckets, tubes etc. (Note: Write any two points)	ocess is used for ng small iron and steel like bolts, screws, nails . There is very little in dimensions of small due to the formation of n layer of Zinc.		
		 Name two properties and two application Properties: It has carbon content 0.6 – 1.5% It is quite hard. It is unweldable. It gets desired hardness on heat treatments Its tensile strength is highest. Applications: High carbon steel is used in making Work chisels, saws, drills, metal cutting tools knives, blades, razors etc. (Note: Write any two points each) 	ment. poden working tools,	1	2
2.		Any FOUR of the following.			16
	a)	Write chemical reactions in the zone of r of iron in blast furnace. The reduction is done in stages as g $Fe_2O_3 \longrightarrow Fe_3O_4 \longrightarrow FeO$		1 mark each	4

Subject Code: 17208 Page No: 7/13 Que. Sub. Total Model Answers Marks Marks No. Que. i) In between $300 - 500^{\circ}$ C, when charge is heated, Fe₂O₃ (Ferric 2. a) oxide) is reduced to Fe₃O₄ (Ferroso ferric oxide). $3Fe_2O_3 + CO \longrightarrow 2Fe_3O_4 + CO_2$ This Fe_3O_4 is stable upto $650^{\circ}C$ in presence of CO, CO₂ & free coke. ii) In between $650 - 700^{\circ}$ C, Fe₃O₄ is reduced to FeO $Fe_3O_4 + CO \longrightarrow 3FeO + CO_2$ iii) At temperature between $700 - 800^{\circ}$ C, FeO is reduced to metallic iron. $FeO + CO \longrightarrow Fe + CO_2$. iv) Simultaneously, the limestone present in the charge is also decomposed to produce lime. $CaCO_3 \rightarrow CaO + CO_2$ v) The metal produced is spongy; simultaneously a part of metallic iron reacts with CO to form Fe_2O_3 or Fe_3O_4 $2Fe + 3CO \longrightarrow Fe_2O_3 + 3C.$ $3Fe + 4CO \longrightarrow Fe_3O_4 + 4C.$ (Note: Write any four points) 4 Write mechanism of electro chemical corrosion by absorption b) of O₂ gas. By crack Anode: -Cathode :- Coated metal part Drop of water 1 Rust Oxide film Rust Fe Fe Cathode large Cathode large 2H₂O₂ + O₂ + 4e --- 4OH Anode (by crack) Fe ---> Fe⁺⁺+ 2e⁻ Steel plate **Process:** 1 i) The surface of iron is usually coated with a thin film of iron oxide. However if this iron oxide film develops some cracks, anodic areas are created on the surface while the coated metal part acts as cathode.

Subject Code: 17208

Page No: 8/13

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2.	b)	At Anode:- Fe \longrightarrow Fe ⁺⁺ + 2e ⁻ The liberated electrons flow from anode to cathode areas. The electrons are reacting with water and dissolved O ₂ . At Cathode:- $2H_2O + O_2 + 4e^- \longrightarrow 4OH^-$ The Fe ²⁺ ions at anode and OH ⁻ ions at cathode diffuse and when they meet Fe(OH) ₂ is precipitated. Fe ²⁺ + 2(OH) ⁻ \longrightarrow Fe (OH) 2 If enough oxygen is present, Fe (OH) ₂ gets converetd into Fe(OH) 3 i.e. yellow rust. 4 Fe (OH) 2 + O2 + 2H_2O \longrightarrow 4 Fe (OH) 3	2	
	c)	Explain reverse osmosis method with labeled diagram for distillation of sea water.		4
		Pressure Piston Inlet Piston Sea water or Polluted water SPM Pure water	1	
		In reverse osmosis the flow of solvent takes place in reverse direction i.e. from higher concentration solution to lower concentration solution through the semi permeable membrane (SPM). Thus in reverse osmosis, we separate water from its contaminants rather than contaminants from water. Sea water is filled in reverse osmosis cell. A pressure of 200-800 psi is applied on it to force the solvent to pass through SPM.SPM has such porosity that it allows only H ₂ O molecules to pass through & higher sizes ions are prohibited from passing.	3	

Subject Code: 17208

Page No: 9/13

Que.	Sub.		Model Answer		Marks	Total
No. 2.	Que. d)	Write the c	hemical composition of Portlan	d cement.		Marks 16
	,	Sr.	Name of Constituent	Percentage	1/2	4
		No.			mark	
		1	Lime (CaO)	60 - 67%	each	
		$\frac{2}{3}$	Silica (SiO ₂) Alumina (Al ₂ O ₃)	<u>17 - 25%</u> <u>3 - 8%</u>		
		4	Iron Oxide (Fe_2O_3)	0.5 - 6%		
		5	Magnesia(MgO)	0.1 - 4%		
		6	Sulpher trioxide (SO ₃)	1-2%		
		7	Soda and Potash (Na ₂ O+K ₂ O) Gypsum (CaSO ₄ .2H ₂ O)	0.5 - 1.3% 3 - 4%		
		0	Oypsum (Ca504.21120)	3-470		
		List two dis	sadvantages of using hard wate	r in paper and textile		
	e)	industry.	0 0			
		Paper indu	ustry- 1) If hard water used in	textile industry then la	-	4
		quantity	of soap is wasted.		2	
		2) If hard w	ater is used in paper manufacturi	ng, then Ca^{2+} and Mg^{2+} i	ons	
		react wi	th the paper material. Hence, p	paper will not have dest	red	
		smoothn	less and glossiness.			
		3) Iron & m	anganese impurities in hard wate	r affect whiteness of colo	ors.	
		Textile ind	ustry-1) If hard water used in	textile industry then la	irge	
		quantity	of soap is wasted while washing	the yarn.	2	
		2) At the sa	me time, undesirable precipitate	is formed which adhere		
		the fabri	cs and the exact shades of color a	re not obtained.		
		3) Iron & m	anganese salts may cause stains o	on fabrics.	1	
		(Note: Writ	te any four points)			
	e	Define heat	t treatment. Give four purposes	of heat treatment.		
	f)	heating stee controlled r	Heat treatment of steel may be el to a certain high temperature rate, in order to develop certain d t changing it chemical compositio	e and then cooling it a lesirable physical proper	ita 1	4

Subject Code: 17208

Page No: 10/13

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
<u>1</u> NO. 2.	f)	Purpose:-		Iviai K5
	_/	• To change the structure of steel,		
		• To increase surface hardness.	3	
		• To increase resistance to heat & corrosion.		
		• To vary strength & hardness.		
		• To make steel easily workable.		
		• To remove the trapped gases.		
		• To improve machinability & mechanical properties.		
		• To alter magnetic properties of steel.		
3.		Any FOUR of the following.		16
		Explain atmospheric corrosion. Describe two factors affecting		
	a)	rate of it.		4
		Atmospheric corrosion: - This type of corrosion occurs when	2	
		metal surface comes in immediate contact directly with atmospheric	2	
		gases like O_2 , Cl_2 , Br_2 , I_2 , H_2S , CO_2 , SO_2 , NO_2 etc. OR		
		Type of corrosion which is brought about by the atmospheric		
		conditions is called atmospheric corrosion.		
		Factors:-		
		1) Impurities in the atmosphere:-	1	
		Corrosion rate is fast in the presence of all impurities such as H_2S ,		
		SO ₂ , CO ₂ , Cl ₂ , gases along with vapors of HCl & H ₂ SO ₄ etc.		
		Atmospheric air in industries areas contains these impurities.		
		2) Moisture in the atmosphere:-		
			1	
		Atmospheric gases & chemical vapors dissolve in moisture and		
		reaction between such dissolved gases and metal becomes faster.		
		Therefore moisture acts as conducting medium and enhances the		
		corrosion.		

Subject Code: 17208

Page No: 11/13

Que.	Sub.	Madalaray	Marilia	Total
No.	Que.	Model answers	Marks	Marks
3.	b)	Write chemical reactions taking place during in setting and		4
		hardening of cement.		
		1) Uzdrolygig		
		1] Hydrolysis:		
		$C_3S + (x+1)H_2O \longrightarrow C_2S. xH_2O + C.H_2O.$	2	
		$C_4AF + 7 H_2O \longrightarrow C_3A. 6H_2O + CF.H_2O.$		
		2] Hydration:		
		$C_3S + xH_2O \longrightarrow C_2S \cdot x H_2O + CaO.$		
			2	
		$C_3A + 6 H_2O \longrightarrow C_3A.6 H_2O + Heat.$		
	c)	Describe ion exchange process of softening with net labeled		4
		diagram and chemical reactions.		т
		Ion exchange process is the process removing minerals salts present		
		in hard water.		
		Water + CO ₂		
		water + acid + acid CO ₂		
		Cation exchanger	2	
		Acid for regeneration		
		Degasifier Demineralised		
		water		

Subject Code: 17208

Page No: 12/13

Que.	Sub.	Model answers	Marks	Total
No.	Que.		11101 N5	Marks
3.	c)	Working and chemical reactions: It consists of two cylindrical towers. The first tower consists of cations exchanger (RH_2) & another one consists of anion exchanger R'(OH) ₂ . Hard water is first allowed to pass through a tower containing cation exchanger which removes all the cations like Ca ²⁺ , Mg ²⁺ etc. $RH_2 + CaCl_2 \rightarrow RCa + 2HCl$ $RH_2 + MgSO_4 \rightarrow RMg + H_2SO_4$ This acidified water is then passed through tank containing anion exchange resins. Here all the anions are replaced by OH ⁻ ions. $R'(OH)_2 + 2HCl \rightarrow R'(SO_4) + 2H_2O$ $R'(OH)_2 + H_2SO_4 \rightarrow R'(SO_4) + 2H_2O$ Thus water becomes free from all ions. This water is then passed through a degasifier to remove gases like CO ₂ .	2	4
	d)	Explain why tinned containers preferred over galvanized containers for storing food stuffs.		4
		Tinned containers preferred over galvanized containers for storing food stuffs. Because Tin metal is less active and have corrosion resistance. It is nontoxic and does not react with food stuff and does not causes food poisoning. Whereas zinc is more electropositive (active metal) than iron hence it reacts with weak organic acids present in food stuffs to produce poisonous compound.	2	
	e)	Describe details about the electrochemical protection by sacrificial anodic method with the help of diagram. Write its applications.		4
		Ground Insulated wire		
		Underground pipeline		

Subject Code: 17208

Page No: 13/13

Que.	Sub.	Model answers	Marks	Total Marila
No. 3.	Que. e)	The metallic structure to be protected from corrosion is		Marks
	-,	connected to the anodic metal by an insulating wire. The more		
		active metals like Zn, Al, Mg etc. acts as anode and get corroded	2	
		hence it is known as sacrificial anode. For the purpose of increasing		
		electrical contact the active metal is placed in back fill. (Coal +		
		NaCl) When the sacrificial metal is consumed completely it is		
		replaced by fresh piece.		
		Applications: This method is applicable to protect buried pipelines,	1	
		buried cables, hot water tank, ship hull etc. Mg or Zn rods are	1	
		bolted along the sides of ship, hot water tank or inserted into boiler		
		to prevent corrosion.		
	f)	On analysis of a sample of water it is found that 100ml water		
		sample requires 20ml of 0.01m EDTA solution using butter and EBT indicator. Calculate hardness of water sample in ppm.		4
		We know that,		
		$1000ml \ 1M \ EDTA = 1000ml \ 1M \ of \ CaCO_{3.}$		
		1000ml 1M EDTA = 100gm of $CaCO_{3}$.	1	
		Therefore, to calculate,		
		1000ml 1M EDTA = 100gm of $CaCO_{3}$.		
		$20\text{ml}\ 0.01\text{M}\ \text{EDTA} = 100 \text{ x } 20 \text{ x } 0.01 \text{ / } 1000 \text{ x } 1 \text{ gm of } \text{CaCO}_{3.}$		
		$= 0.02 \text{gm/lit} \text{ of } \text{CaCO}_{3.}$	2	
		To convert gm./lit into mg/lit, we have.		
		$0.02 \text{ x } 1000 = 20 \text{ mg/lit} \text{ of } CaCO_{3}$	1	
		$= 20 \text{ ppm of CaCO}_{3.}$	T	
		Therefore hardness of water sample = 20ppm.		