

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17208

SUMMER – 14 EXAMINATION Model Answer

Page No: 1/12

Applied Chemistry

\sim	Sub. Que.	Model Answer	Marks	Total Marks
\sim		 Incase of some questions credit may be given by judgement on a source statement. To rapproximating any and the canswer written by candidate may wary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept. 	Marks	

Subject Code: 17208

Page No: 2/12

Model Answ	er	Marks	Total Marks
			18
XX 7 •4 • 41 • • • 1			
Name	mical formulae. Molecular formula		2
Magnetite		1	2
Haematite	$\frac{\text{Fe}_{3}\text{O}_{4}}{\text{Fe}_{2}\text{O}_{3}}$	mark	
Limonite	$2Fe_2O_3$. 3 H ₂ O		
Siderite	FeCO ₃	each	
Iron pyrite	FeS ₂		
vith formula: 1 r			
			2
process of extrac ably	tion of a metal from its ore	1	
•	some fusible mass known		
6. 6		1	
rties of mild stee lleable, ductile. lding. at treatment. h is low. ised permanently k and impact. sion quickly.		¹ /2 mark each	2
on of surrounding	ical decay or destruction of medium is called as	1	2
prrosion or Direc	chemical corrosion or Dry	1/2	
anion on alaster	abamical actuacion on Wet		
usion or electro	chemical corrosion or wet		
		osion or electro chemical corrosion or Wet	

Subject Code: 17208

Page No: 3 /12

Que.	Sub.		Model Ansv	Mar	Marks	Total
No.	Que.				IVIAI NO	Marks
1.	e)		y two characteristics of idea	-		2
			ould be able to resist the atmo	-	-	
			hould have desired consistency	/.	1	
			ould have high hiding power.		mark	
		,	ilm should be washable.	on duving	each	
		<i>,</i>	ilm should not crack or shrink			
			ould form uniform, nonporous sy film.	s, adherent, durable and		
		U	en paint is applied on a metal,	it should resist corrosion		
			wo: 2 Marks)			
	f)	•	sh between galvanizing and t	inning.		
	,	Sr.No.	Galvanizing	Tinning		2
		i)	A process of covering iron	A process of covering iron		
			or steel with a thin coat of	or steel with a thin coat of		
			Zinc to prevent it from	Tin to prevent it from		
			rusting.	corrosion.		
		ii)	In galvanising, zinc	Tin protects base metal		
			protects the iron as it is	iron from corrosion, as it	1	
			more electropositive than	is less electropositive than	mark	
			iron.It does not allow iron	iron and higher corrosion	each	
			to pass into solution.	resistance.		
		iii)	In galvanizing Zn	In tinning, tin protects the		
			continues to protect the	iron, till the coating is		
			metal by galvanic cell	perfect.Any break in		
			action, even if coating of	coating causes rapid		
			Zn is broken.	corrosion.		
		iv)	Galvanized containers can	Tin coated containers and		
			not be used for storing	utensils can be used for		
			acidic food stuff, since Zn	storing any food stuff		
			reacts with food acids forming Zn compounds	since Tin is non toxic and protects the metal from		
			which are highly toxic i.e.	corrosion and does not		
			poisonous.	causes food poisoning.		
			poisonous.	euuses roou poisoining.		
		(Note: A	Any two points: 2 marks)			
	g)	Write tw	vo applications of electroplat	ing.		
	⁄ئ		Used for protective coating of m			2
			Ised to improve appearance an		1	4
			Used to increase resistance to co		mark	
			Used for coating of non-metals			
			mpart decoration, preservation		each	
			Used in making surface conduc			
			weight as in case of wood and	-		
		(Note: 1	wo applications : 1 mark ea	ch)		

Page No. 4/12

~			No: 4/12	
Que.	Sub.	Model Answer	Marks	Total Marile
No.	Que.	Nome the times of impunities in natural motor	1/	Marks
1	h)	Name the types of impurities in natural water.a) Suspendedc) Colloidal	1/2	2
			mark	
		b) Dissolved d) Biological.	each	
	i)	 Write two advantages and two disadvantages of Zeolite process. Advantages: (Any Two) Water having zero hardness can be obtained. Equipment used is compact. It is a clean process as no impurities are precipitated. It requires less time. Disadvantages: (Any Two) 	^{1/2} mark each	2
		i. If hard water contains coloured ions like Fe $^{2+}$ or Mn $^{2+}$ such		
		 permutits can not be regenerated easily. ii. If hard water contains mineral acids then it may destroy permutits. iii. If hard water is turbid then turbidity may clog the pores of permutit & it restricts the flow of water. iv. This method does not remove anions like CO₃ ²⁻ or HCO₃ ²⁻. Due to these ions CO₂ is released in water and such water is extremely corrosive to boiler material. (Note: Any two advantages and two disadvantages: ¹/₂ mark each) 	^{1/2} mark each	
	j)	Draw the diagram of reverse osmosis cell for desalination of sea water.		2
		Pressure Piston Inlet Sea water or Polluted water SPM Pure water	2	

SUMMER – 14 EXAMINATIONS Subject Code: 17208

Page No: 5 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.	l)	 Name the constituent of Portland Cement. Lime Silica Alumina Alumina Iron oxide Iron oxide Magnesia Sulphur trioxide Soda and Potash Soda and Potash What is slacked lime? Give the reaction. Slacked Lime: When 3 parts of quicklime is mixed with 1 part of 	^{1/2} mark each	2
2.		water, the resulting product is a suspension of finely divided calcium hydroxide in water. It is known as slacked lime. Reaction: CaO + $H_2O \rightarrow Ca (OH)_2 + Heat (15.9 Kcal)$ Quicklime Slaked lime Attempt any four:	1	16
2.	a)	Write the chemical reaction in the zone of heat absorption for extraction of iron in blast furnace. i) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ ii) $CO_2 + C \rightarrow 2CO - 39$ Kcal iii) $2CO \rightarrow CO_2 \uparrow + C$ iv) $CaO + SiO_2 \rightarrow CaSiO_3 (Slag)$ v) $SO_2 + 2C \rightarrow S + 2CO\uparrow$ vi) $P_2O_5 + 5C \rightarrow 2P + 5CO\uparrow$ vii) $MnO_2 + 2C \rightarrow Mn + 2CO\uparrow$ viii) $SiO_2 + 2C \rightarrow Si + 2CO\uparrow$ (Note: Any four reactions: 4 mark)	1 mark each	4
	b)	Define heat treatment properties of steel. Explain hardening. Heat treatment of steel may be defined as the process of heating steel to a certain high temperature and then cooling it at a controlled rate, in order to develop certain desirable physical properties in it without changing its chemical composition.	1	4

Subject Code: 17208

Page No: 6/12

Que. No.	Sub. Que.		Model Answers		Marks	Total Marks
2	200	then suddenly cooled b medium.	y dipping or quenching is either cold water ustic soda, 6-20 % N elasticity, ductility, to cance to wear or abrass ability (ability to cut	or mineral or animal or IaCl solution etc. oughness. sion. other metals).	3	
	c)	Give difference betwe	en pig iron, wrough	t iron and steel.		4
		Pig iron	Wrought iron	Steel		
		Carbon content 2.5-4.5% Structure is crystalline	Carbon content 0.25-0.5% Structure is Fibrous	Carbon content 0.05-1.5% Structure varies according to		
		Melting point is lowest i.e. 1100- 1200 ⁰ c Very hard and brittle	Melting point is highest i.e. 1500 ⁰ c Soft	impuritiesMelting point isbetween 1200-1500 ° cHarder than	1 mark	
		High Tensile strength It is neither malleable nor	Medium Tensile strength malleable and ductile	Wrought ironHighest Tensilestrengthmalleable andductile if % of C is	each	
		ductileIt can not bemagnetisedpermanentlyIt can not be forged	Magnetised but temporarily It can be forged easily	low.It can be magnetised permanentlyIt can be forged but not easily		
			casiiy			

Subject Code: 17208

Page No: 7 /12

Que.	Sub.		Model Answers		Marks	Total Marks
No. 2	Que.	Pig iron	Wrought iron	Steel		warks
		Uses: Casting metal objects like stoves,railings,fire gates,electric poles,bunsen burner-bases etc.	Uses: Chains,wires,bolts,crane hooks,nails,railway couplings, carriages,cores of electromagnets,agricultural implements	Uses: Girders, Machinery Parts,Bar- Magnets, Razors, Springs		
		(Note: Any Four po		rogion by		
	d)	absorption of oxyge Anode: - By crack Cathode :- Coated m Oxide film Rust Cathode large Cathode large Steel plate Process: i) The surface of irom oxide. However if thi areas are created on to cathode. At Anode:- Fe The liberated electron electrons are reacting At Cathode:- $2H_2O +$ The Fe ²⁺ ions at ano they meet Fe(OH) ₂ is Fe ²⁺ + 2 If enough oxygen is p	The tal part Fe^{++} Fe^{++} $2H_2O_2 + O_2 + 4$ Anode (by crack) $Fe \longrightarrow Fe^{++} + 2e^{-}$ The is usually coated with a thin is iron oxide film develops solution the surface while the coated m $Fe^{++} + 2e^{-}$ The flow from anode to cathode g with water and dissolved O_2 $O_2 + 4e^{-}$ O_2 $O_2 + 4e^{-}$ O_2	ther at de large $e \rightarrow 40H^{-}$ film of iron me cracks, anodic hetal part acts as e areas. The dOH^{-} diffuse and when $H)_2 \downarrow$	1 1 1 1	4
		The Fe ²⁺ ions at ano they meet $Fe(OH)_2$ is Fe ²⁺ + 2	de and OH^- ions at cathode of s precipitated. 2(OH) $^- \longrightarrow Fe$ (OH) present, Fe (OH) ₂ gets conver	diffuse and when I) $_2 \downarrow$	1	

Subject Code: 17208

Page No: 8/12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2.	e.	Define atmospheric corrosion.which oxide film is protective?		4
2.	с.	Why?		т
		Atmospheric corrosion: The corrosion which is brought about by	2	
		the atmospheric conditions is called atmospheric corrosion.		
		• Non – Porous oxide film is protective.	1	
		Reason: In Non – Porous oxide film, volume of oxide is greater	1	
		than the volume of metal. Due to absence of any pores in the oxide film, it forms a protective layer and hence the rate of corrosion of	1	
		metal rapidly decreases.	-	
		Unstable oxide film is protective.		
		Reason: As soon as the film is formed it decomposes to give		
		original metal again. Therefore corrosion is not possible here.		
		(Note: Any one of these film can be considered)		
	f)	State and explain metal cladding process with diagram.		
			1	4
		Definition: Metal cladding involves bonding firmly and	1	
		permanently a dense , homogenous layer of a coating metal to the		
		base metal on one or both sides. Process:		
		i) The base metal is sandwiched or cladded between the two sheets	2	
		of coating metal.		
		ii) This sandwich is then passed through two heavy rollers		
		maintained at high temperature & pressure.		
		iii) Cladded metal is cathodic with respect to the base metal so that		
		electrolytic protection is provided		
		Tin plate		
			1	
		Roller		
		OR		
		Alclad sheet		
		Rollers		
		The second s		
		New Summer		
		Aluminium		

SUMMER – 14 EXAMINATIONS Subject Code: 17208

Page No: 9/12

Que. No.	Sub. Que.	Model Answer	Marks	Tota Mark
3.	Que.	Attempt any four :		16
	a)	Explain ion exchange process of water softening with labelled diagram and write chemical reactions. Ion exchange process is the process removing minerals salts present in hard water.		4
		Water + CO ₂ Water + CO ₂ Water + acid Cation Cation Gravel Gravel Alkali for regeneration Water + CO ₂ CO ₂ Steam jacket Degasifier Demineralised water	2	
		Working and chemical reactions: It consists of two cylindrical towers. The first tower consists of cations exchanger (\mathbf{RH}_2) & another one consists of anion exchanger $\mathbf{R'(OH)}_2$. Hard water is first allowed to pass through a tower containing cation exchanger which removes all the cations like Ca^{2+} , Mg^{2+} etc. $\mathbf{RH}_2 + \mathbf{CaCl}_2 \longrightarrow \mathbf{RCa} + \mathbf{2HCl}$ $\mathbf{RH}_2 + \mathbf{MgSO}_4 \longrightarrow \mathbf{RMg} + \mathbf{H}_2\mathbf{SO}_4$ This acidified water is then passed through tank containing anion exchanger resins. Here all the anions are replaced by OH^- ions.	1	
		$\begin{array}{ccc} \mathbf{R}^{\prime}(\mathbf{OH})_{2}+2\mathbf{HCl} \longrightarrow \mathbf{R}^{\prime}\mathbf{Cl}_{2}+2\mathbf{H}_{2}\mathbf{O} \\ \mathbf{R}^{\prime}(\mathbf{OH})_{2}+\mathbf{H}_{2}\mathbf{SO}_{4} \longrightarrow \mathbf{R}^{\prime}(\mathbf{SO}_{4})+2\mathbf{H}_{2}\mathbf{O} \\ \text{Thus water becomes free from all ions. This water is then passed through a degasifier to remove gases like \mathbf{CO}_{2}.$		

Subject Code: 17208

Page No: 10/12

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		IVIAI NS	Marks
3.	b)	 Write two disadvantages each of using hard water textile and dyeing industry. Textile industry i) If hard water is used in textile industry, then large quantity of soap is wasted while washing the yarn. ii) At the same time, undesirable precipitate is formed which adheres to the fabrics and the exact shades of color are not obtained. iii) Fe and Mn salts may cause spots or stains on fabrics. (Note: Any two: 2 Marks) 	1 mark each	4
		 Dyeing industry i)Dye is a coloring material used for coloration of textiles, wool, silk, etc.Ca Mg Fe salts in hard water reacts with dyes to form undesirable precipitates which gives impure shades of dyes. ii) Fe salts produces spots or yellow stains on the clothes. (Note: Any two: 2 Marks) 	1 mark each	
	c)	What are bad effect of using hard water in boiler unit?		4
		i) Boiler Corrosionii) Caustic Embrittlmentiii) Scale and Sludge formation in boilers.	1	
		 i) Boiler Corrosion: It takes place due to dissolved gases like O₂ CO₂, dissolved salts like MgCl₂ or acidic or alkaline water. ii) Caustic embrittlment: It means corrosion due to highly alkaline 	1	
		water.Water becomes alkaline due to sodium carbonate added for water softening.It reacts with water to form NaOH This NaOH deposits in minute cracks present on the inner side of boiler where it attacks the boiler parts and causes its corrosion.	1	
		iii) Scale and Sludge formation in boilers:Scale: Hard, adherent coating on the inner surface of the boiler is known as scale.Sludge: Soft, loose, slimy deposits are formed inside the boiler are known as sludges.	1	
		(Note Any Relevant answer can be considered)		

Subject Code: 17208

Page No: 11/12

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3.	d)	 Write quality parameter for potable water. i. Water should be clear, colorless,odourless and sparkling. ii. It should be pleasant in taste. iii. It should be free from disease causing micro-organisms. iv. It should be reasonably soft. v. Its turbidity should not be more than 10 ppm. vi. Its colour should not exceed 20 ppm. vii. Its dissolved solids should not be more than 500 ppm. (Note: Any four parameters : 4 Marks) 	1 mark each	4
	e)	 Descibe chlorination process with chemical reaction by using chlorine gas and bleaching powder.Write its advantages. I] By using Cl₂ gas- Cl₂ reacts with water to produce hypochlorous acid & nascent oxygen. Both are powerful germicides.Thus kills germs & 	1 ½ mark	4
		microorganisms. 1) $Cl_2 + H_2O \longrightarrow HOCl + HCl$ [Hypochlorous acid] 2) $HOCl \longrightarrow HCl + [O]$ (Nascent oxygen) 3) Germs + [O] \longrightarrow Germs are killed	each	
		II] By using bleaching powder: About 1 Kg. of bleaching powder per 1000 litres of water is mixed and resulting solution is allowed to stand for several hours. Following reactions takes place. $CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + Cl_2$ [Bleaching powder] $Cl_1 + H_2O \longrightarrow HOCl_2 + HCl_2$	1 ½ mark each	
		$\begin{array}{cccc} Cl_2 + H_2O & \longrightarrow & HOCl & + & HCl \\ HOCl & \longrightarrow & HCl & + & [O] \\ [Hypochlorous acid] & [Nascent oxygen] \\ Germs + [O] & \longrightarrow & Germs are killed \\ Thus bleaching powder helps to kill microorganisms. \\ \hline \end{array}$		
		 Advantages: I] Chlorine gas can be directly used as a gas or as chlorine water for sterilisation of water. II] Bleaching powder is a good sterilizer for small water works. III] Chlorine gas and Bleaching powder both are very effective for sterilisation of domestic water, swimming pools etc. 	1 mark	

Subject Code: 17208

Page No: 12/12

No.61Lime (CaO)602Silica (SiO_2)1'3Alumina (Al_2O_3)34Iron Oxide (Fe_2O_3)0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3)17Soda and Potash (Na_2O+K_2O)0.8Gypsum (CaSO_4.2H_2O)3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large and C_3A. 6H_2O crystals.C_3A + 6H_2O \rightarrow C_3A. 6H_2O (Crystals.)These crystals prevent the hydration constitutionals compounds forming a barrier of the section of the	ture of calcium of gypsum which are al reaction with water.	1	Marks 4
function of gypsum in cement.Portland Cement:It is defined as the finely divided greyish mixtssilicates and aluminates with a small amount of capable of setting and hardeneing by chemicalChemical Composition of Portland cementsSr. Name of ConstituentNo.P1Lime (CaO)662Silica (SiO ₂)1'3Alumina (Al ₂ O ₃)34Iron Oxide (Fe ₂ O ₃)0.5Magnesia(MgO)0.6Sulpher trioxide (SO ₃)17Soda and Potash (Na ₂ O+K ₂ O)0.8Gypsum in Cement:Tricalcium aluminate (C ₃ A) present in colwater very rapidly with evolution of large arC ₃ A. 6H ₂ O crystals.C ₃ A. 6H ₂ O \rightarrow C ₃ A. 6H ₂ O1CrystalsThese crystals prevent the hydrationconstitutionals compounds forming a barrier of	ture of calcium of gypsum which are al reaction with water. C- Percentage $\frac{60 - 67\%}{7 - 25\%}$ $\frac{5 - 8\%}{9.5 - 6\%}$ $\frac{5 - 6\%}{9.1 - 4\%}$		
It is defined as the finely divided greyish mixts silicates and aluminates with a small amount of capable of setting and hardeneing by chemicalChemical Composition of Portland cementsSr.Name of ConstituentP No.1Lime (CaO)602Silica (SiO ₂)1'3Alumina (Al ₂ O ₃)34Iron Oxide (Fe ₂ O ₃)0.5Magnesia(MgO)0.6Sulpher trioxide (SO ₃)17Soda and Potash (Na ₂ O+K ₂ O)0.8Gypsum (CaSO ₄ .2H ₂ O)3Role of Gypsum in Cement:Tricalcium aluminate (C ₃ A) present in constitution of large ar C ₃ A. 6H ₂ O crystals.C ₃ A + 6H ₂ O \rightarrow C ₃ A. 6H ₂ O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the section of t	of gypsum which are al reaction with water. Percentage 60 - 67% 7 - 25% 5 - 8% 0.5 - 6% 0.1 - 4%		
It is defined as the finely divided greyish mixts silicates and aluminates with a small amount of capable of setting and hardeneing by chemicalChemical Composition of Portland cementsSr.Name of ConstituentP No.1Lime (CaO)602Silica (SiO ₂)1'3Alumina (Al ₂ O ₃)34Iron Oxide (Fe ₂ O ₃)0.5Magnesia(MgO)0.6Sulpher trioxide (SO ₃)17Soda and Potash (Na ₂ O+K ₂ O)0.8Gypsum (CaSO ₄ .2H ₂ O)3Role of Gypsum in Cement:Tricalcium aluminate (C ₃ A) present in constitution of large ar C ₃ A. 6H ₂ O crystals.C ₃ A + 6H ₂ O \rightarrow C ₃ A. 6H ₂ O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the section of t	of gypsum which are al reaction with water. Percentage 60 - 67% 7 - 25% 5 - 8% 0.5 - 6% 0.1 - 4%		
silicates and aluminates with a small amount of capable of setting and hardeneing by chemical Chemical Composition of Portland cements Sr. Name of Constituent P No. 1 Lime (CaO) 66 2 Silica (SiO ₂) 17 3 Alumina (Al ₂ O ₃) 3 4 Iron Oxide (Fe ₂ O ₃) 0. 5 Magnesia(MgO) 0. 6 Sulpher trioxide (SO ₃) 1 7 Soda and Potash (Na ₂ O+K ₂ O) 0. 8 Gypsum (CaSO ₄ .2H ₂ O) 3 Role of Gypsum in Cement: Tricalcium aluminate (C ₃ A) present in constitution of large an C ₃ A. 6H ₂ O crystals. C ₃ A + 6H ₂ O \rightarrow C ₃ A. 6H ₂ O (Crystals) These crystals prevent the hydration constitutionals compounds forming a barrier of	of gypsum which are al reaction with water. Percentage 60 - 67% 7 - 25% 5 - 8% 0.5 - 6% 0.1 - 4%		
capable of setting and hardeneing by chemicalChemical Composition of Portland cement:Sr.Name of ConstituentPNo.1Lime (CaO)602Silica (SiO ₂)1'3Alumina (Al ₂ O ₃)34Iron Oxide (Fe ₂ O ₃)0.5Magnesia(MgO)0.6Sulpher trioxide (SO ₃)17Soda and Potash (Na ₂ O+K ₂ O)0.8Gypsum in Cement:Tricalcium aluminate (C ₃ A) present in constitution of large an C ₃ A. 6H ₂ O crystals.C ₃ A + 6H ₂ O \rightarrow C ₃ A. 6H ₂ OThese crystals prevent the hydration constitutionals compounds forming a barrier of the set of t	al reaction with water. Percentage $ \frac{10 - 67\%}{7 - 25\%} $ $ \frac{5 - 8\%}{9 - 5 - 6\%} $ 0.1 - 4%	1	
Sr.Name of ConstituentPNo.1Lime (CaO)602Silica (SiO2)1'3Alumina (Al2O3)34Iron Oxide (Fe2O3)0.5Magnesia(MgO)0.6Sulpher trioxide (SO3)17Soda and Potash (Na2O+K2O)0.8Gypsum (CaSO4.2H2O)3Role of Gypsum in Cement:Tricalcium aluminate (C3A) present in compared of the second of the seco	Percentage 60 - 67% 7 - 25% 6 - 8% 0.5 - 6% 0.1 - 4%	1	
No.I1Lime (CaO)602Silica (SiO_2)173Alumina (Al_2O_3)34Iron Oxide (Fe_2O_3)0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3)17Soda and Potash (Na_2O+K_2O)0.8Gypsum (CaSO_4.2H_2O)3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large an C_3A. 6H_2O crystals.C_3A + 6H_2O \rightarrow C_3A. 6H_2O (Crystals).These crystals prevent the hydration constitutionals compounds forming a barrier of the section.		1	
No.61Lime (CaO)602Silica (SiO_2)173Alumina (Al_2O_3)34Iron Oxide (Fe_2O_3)0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3)17Soda and Potash (Na_2O+K_2O)0.8Gypsum (CaSO_4.2H_2O)3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large and C_3A. 6H_2O crystals.C_3A + 6H_2O \rightarrow C_3A. 6H_2O (Crystals.)These crystals prevent the hydration constitutionals compounds forming a barrier of the section of the		1	
2Silica (SiO_2) 1'3Alumina (Al_2O_3) 34Iron Oxide (Fe_2O_3) 0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3) 17Soda and Potash (Na_2O+K_2O) 0.8Gypsum $(CaSO_4.2H_2O)$ 3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large an C_3A . $6H_2O$ crystals.C_3A + $6H_2O \rightarrow C_3A$. $6H_2O$ (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the section.	7 - 25% 5 - 8% 0.5 - 6% 0.1 - 4%	1	
3Alumina (Al_2O_3) 34Iron Oxide (Fe_2O_3) 0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3) 17Soda and Potash (Na_2O+K_2O) 0.8Gypsum $(CaSO_4.2H_2O)$ 3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large an C3A. 6H2O crystals.C3A + 6H2O \rightarrow C3A. 6H2O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the section.	9 - 8% 9.5 - 6% 9.1 - 4%		
4Iron Oxide (Fe_2O_3) 0.5Magnesia(MgO)0.6Sulpher trioxide (SO_3) 17Soda and Potash (Na_2O+K_2O) 0.8Gypsum $(CaSO_4.2H_2O)$ 3Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in constitution of large and C_3A . $6H_2O$ crystals.C_3A. $6H_2O$ crystals.C_3A. $6H_2O$ crystals.These crystals prevent the hydration constitutionals compounds forming a barrier of the section of the se	0.5 - 6% 0.1 - 4%		
5Magnesia(MgO)0.6Sulpher trioxide (SO_3)17Soda and Potash (Na2O+K2O)0.8Gypsum (CaSO4.2H2O)3Role of Gypsum in Cement:Tricalcium aluminate (C3A) present in constitution of large and C3A. 6H2O crystals.C3A + 6H2O \rightarrow C3A. 6H2O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the compounds forming a barrier	0.1 - 4%		
6Sulpher trioxide (SO3)17Soda and Potash (Na2O+K2O)0.8Gypsum (CaSO4.2H2O)3Role of Gypsum in Cement:Tricalcium aluminate (C3A) present in constitution of large and C3A. 6H2O crystals.C3A + 6H2O \rightarrow C3A. 6H2O (Crystals).These crystals prevent the hydration constitutionals compounds forming a barrier of the compounds forming a barrier of the component o			
7Soda and Potash (Na2O+K2O)0.8Gypsum (CaSO4.2H2O)3Role of Gypsum in Cement:Tricalcium aluminate (C3A) present in constitution of large and C3A. 6H2O crystals.C3A. 6H2O crystals.C3A + 6H2O \rightarrow C3A. 6H2O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the compounds forming a barrier of	-2.70		
8Gypsum (CaSO4.2H2O)3Role of Gypsum in Cement:Tricalcium aluminate (C3A) present in composition of large and C3A. 6H2O crystals.C3A. 6H2O crystals.C3A + 6H2O \rightarrow C3A. 6H2O (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the composition of the co	0.5 - 1.3%		
Role of Gypsum in Cement:Tricalcium aluminate (C_3A) present in construction of large and C_3A . 6H2O crystals. $C_3A. 6H_2O$ crystals. $C_3A + 6H_2O \rightarrow C_3A. 6H_2O$ (Crystals)These crystals prevent the hydration constitutionals compounds forming a barrier of the compounds forming a barrier of the component of t	3 - 4%		
Tricalcium aluminate (C ₃ A) present in co water very rapidly with evolution of large an C ₃ A. $6H_2O$ crystals. C ₃ A + $6H_2O \rightarrow C_3A$. $6H_2O$ (Crystals) These crystals prevent the hydration constitutionals compounds forming a barrier	170		
this, the cement paste becomes stiff and cause To avoid this early initial set, gypsum is added gypsum retards the dissolution of C_3A be calcium sulpho – aluminate which does not property. $C_3A + x H_2O + y CaSO_4 \cdot 2H_2O \rightarrow C_3A.y. C$ This reaction prevents a high concentration cement solution & thereby decreasing the of cement.	 mount of heat to form + Heat reaction of other over them. Because of es flash or initial set. ed in cement. The added by forming insoluble thave quick hydration CaSO₄. z H₂O on of alumina in the 	2	