MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-2015 EXAMINATION Subject Code: 17202 Model Answer Applied Science (Physics) Page No: 01/12						
Que.	Sub.	Stepwise Solution	Marks	Total		
No.	Que.			Marks		
		 Important Instructions to examiners: The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept. 				

t Code	: 17202 <u>Model Answer</u>	Page N	lo: 02/12
Sub.	Stepwise Solution	Marks	Total
Que.			Marks
a)	Define uniform acceleration and state its SI unit. Definition Unit	1 1	18 2
	If the acceleration:- If the acceleration of a body is uniform in magnitude and direction w.r.t. time then it is called uniform acceleration. OR If change in velocity of a body is constant in every equal interval of time then it is called uniform acceleration. S .I. Unit :- m / s^2		2
b)	 State work energy principle. Principle Work energy principle: It states that the work done by a system of forces acting on a body between any two points is equal to the change in kinetic energy of a body between these two points. 	2	2
c)	If a body of mass 160 kg changes its velocity from 18 m/s to 9 m/s, calculate the impulse acting on a body. Formula Answer with unit Given, $m = 160 \text{ kg}$ $u = 18 \text{ m/s}$ $v = 9 \text{ m/s}$ Impulse = ?	1 1	2
d)	 Impulse = mv - mu = m (v - u) = 160 (9 - 18) Impulse = - 1440 kg m/s or Nsec (Negative sign indicates that impulse is in the opposite direction of motion.) Define projectile motion. Give two examples of projectile motion. Definition Two examples Projectile motion: – Projectile motion is the motion of a body thrown (projected) in air at an angle θ (less than 90°) with the horizontal. Examples 1) Motion of a football kicked in air. 2) Motion of a cricket ball as batsman hits a six. 3) Motion of javelin in the sports event. 	1 1	2
	Sub. Que. a) b)	Sub. Que.Stepwise SolutionAttempt any NINE of the following: Define uniform acceleration and state its SI unit. Definition Unit Unit Uniform acceleration:- If the acceleration of a body is uniform in magnitude and direction w.r.t. time then it is called uniform acceleration. OR If change in velocity of a body is constant in every equal interval of time then it is called uniform acceleration. S J. Unit :- m / s²b)State work energy principle. Principle Work energy principle: It states that the work done by a system of forces acting on a body between any two points is equal to the change in kinetic energy of a body between these two points.c)If a body of mass 160 kg changes its velocity from 18 m/s to 9 m/s, calculate the impulse acting on a body. Formula Answer with unit Given, m = 160 kg u = 18 m/s v = 9 m/s Impulse = ?d)Define projectile motion. Give two examples of projectile motion.)d)Define projectile motion. Give two examples of projectile motion. Two examples Projectile motion is the motion of a body thrown (projected) in air at an angle θ (less than 90°) with the horizontal. Examples I) Motion of a cortext ball as batsman hits a six.	Sub. Que.Stepwise SolutionMarksAttempt any NINE of the following: a)Define uniform acceleration and state its SI unit. Definition Unit1Unif Unit1If the acceleration -1 If the acceleration of a body is uniform in magnitude and direction w.r.t. time then it is called uniform acceleration. OR If change in velocity of a body is constant in every equal interval of time then it is called uniform acceleration. S.I. Unit :- m / s ² 2b)State work energy principle. Principle Work energy principle: It states that the work done by a system of forces acting on a body between any two points is equal to the change in kinetic energy of a body between these two points.1c)If a body of mass 160 kg changes its velocity from 18 m/s to 9 m/s, calculate the impulse acting on a body. Formula Answer with unit Given, m = 160 kg Impulse = -1440 kg m/s or Nsec (Negative sign indicates that impulse is in the opposite direction of motion.)1d)Define projectile motion. Give two examples of projectile motion. Definition Two examples Projectile motion: - Projectile motion is the motion of a body thrown (projected) in air at an angle θ (less than 90°) with the horizontal. Examples I) Motion of a forball kicked in air. 2) Motion of a cricket ball as batsman hits a six.1

Subje	ct Code	e: 17202 <u>Model Answer</u> Page N	lo: 03/12	2
Que.	Sub.			Total
No.	Que.	Stepwise Solution	Marks	Marks
1)	e)	State any two properties of ultrasonic waves Each Property	1	2
		i) Frequency of these sound waves is more than 20 kHz.	1	
		ii) It has shorter wavelength.		
		iii) They carry high amount of sound energy.		
		iv) The speed of propagation of ultrasonic waves increases with increase in frequency.		
		v) They show negligible diffraction.		
		vi) Ultrasonic waves travel over long distance without considerable loss.		
	f)	Define neutral temperature and inversion temperature. Each definition Neutral temperature – In thermocouple the temperature at which the	1	2
		emf is maximum is called inversion temperature. Inversion Temperature: In thermocouple the temperature at which the emf becomes zero and changes its sign (becomes negative) is called as		
		inversion temperature. Define thermo emf. State factors on which thermo emf is		2
	g)	dependent. Definition		2
		Factors	1	
		Thermo emf :- When two dissimilar metals are joined together, so that two junctions are formed and if one junction is heated and other is cooled then the emf is generated across the junction called as thermo emf.	1	
		Factors affecting thermo emf		
		 Pair of metal selected from thermoelectric series. Temperature difference between two junction of thermocouple. 		
	h)	State any two properties of photon.		2
		 Any two Properties i. It is an indivisible entity. The existence of photon is same as existence of electron. ii. Photon is electrically neutral. iii. They cannot be deflected by electric or magnetic field. iv. They travel with speed of light. 	2	
		v. Photon does not ionize.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17202 <u>Model Answer</u> Page No: 05/12						
Que.	Sub.			Total		
No.	Que.	Stepwise Solution	Marks	Marks		
1)	1)	Explain population inversion. Normally the population of lower energy level (ground state) is higher than higher energy level (excited state) but to produce stimulated emission population of higher energy level (excited state) should be greater than lower energy level (ground state). Making population of higher energy level (excited state) more than lower energy level (ground state) is called as population inversion. It is achieve by different methods like optical pumping, chemical reaction, etc	2	2		
2)	a)	Attempt any FOUR of the following: A bullet of mass 30 gm leaves the barrel of a gun with muzzle velocity of 800 m/s. If the length of barrel is 1 m find the impulse and the impulsive force. Each Formula Answer with unit Given : $m = 30 \text{ gm} = 0.03 \text{kg}$ $u = 0$ $v = 800 \text{ m/s}$ $s = 1 \text{ m}$ Impulse =? Impulsive force =?	1 2	16 4		
		We have , Impulse = m x (v - u) $= 0.03 x (800 - 0)$ $Impulse = 24 kg m/s OR Ns$ We have $v^{2} = u^{2} + 2as$ $a = v^{2} - u^{2} / 2s$ $a = (800)^{2} / 2$ $a = 320000 m/s^{2}$ Impulsive force = mass x acceleration = 0.03 x 320000 $Impulsive force = 9600 N$				
	b)	State the three equations of motion when a body is moving vertically upwards against gravity along with meanings of symbols. Three equation meaning v = u - gt $s = ut - 1/2gt^2$ $v^2 = u^2 - 2gs$ Where, u = Initial velocity, v= final velocity, t= time, s = distance travelled, g = gravitational acceleration.	3	4		

2)	c)	A bullet is fired with a velocity of 350 m/s in the direction making an angle of 35 ⁰ with the horizontal calculate i) Maximum height reached ii) Range		4
		Each formula	1	
		Answer with unit	2	
		Given : $v = 350 \text{ m/s}$ $\theta = 35^{\circ} \text{ g} = 9.81 \text{ m/s}^2 \text{ H} = ? \text{ R} = ?$		
		Maximum height $H = (v \sin \theta)^2 / 2g$ $H = (350 x \sin 35^0) / 2 x 9.81$ H = 2056.185 m		
		Range $R = v^2 \sin 2\theta/g$		
		$R = (350)^2 x \sin 2(35) / 9.81$ R = 11746.35 m		
	d)	Explain production of ultrasonic waves using piezoelectric method.		
		Diagram with label	1	4
		Principle	1	
		Working	2	
		Electric conflictor		
		circuit (~)		
		Principle: When the electric field is applied across the piezoelectric		
		crystal its dimensions changes and when alternating PD is applied across		
		crystal then the crystal sets into elastic vibrations along the perpendicular axis.		
		Working: A chip of piezo-electric crystal like quartz is placed between		
		two plates as shown in figure. A suitable oscillator is connected across it.		
		The electric oscillations along the electric axis produce mechanical		
		vibrations along the mechanical axis. The frequency of oscillator is		
		increased. At a particular frequency of oscillator, the oscillator frequency		
		becomes equal to natural frequency of vibration of crystal. Then the		
		crystal sets into resonance vibration and ultrasonic waves are produced.		

Subje	ct Code	e: 17202 Model Answer Page N	Jo: 07/12	2
Que.	Sub.	v		Total
No.	Que.	Stepwise Solution	Marks	Marks
2)	e)	State the criteria for selection of NDT method. Four Points	4	4
		 i) Codes or standard requirement. ii) Specification of material to be tested, for example, nature of material, its size and shape. iii) Type of disorders to be detected, also depend on nature of disorders. iv) Testing also depends on manufacturing process of material to be tested. v) It is also depending on the equipment available for testing. vi) Total cost required to test the material. 		
	f)	 Describe LPT with its i) Principle ii) Experimental Procedure Principle Experimental Procedure Principle: It works on the principle of capillarity Experimental Procedure: 1.Surface preparation: Initially the surface of the specimen is cleaned. Because the presence of flakes, dirt, grease etc on the surface of work piece prevents penetrant to be slip into the cracks. This gives wrong information. 	1 3	4
		2. Application of Dye penetrant: Suitable fluorescent dye is mixed in penetrant so that its viscosity remains low. This dye penetrant is applied evenly on specimen. Due to capillary action the penetrant goes into the surface discontinuities, it takes some time in general case dwell time required is 20-30 minutes.		

		WINTER-2015 EXAMINATION		
Subje	ct Code	: 17202 <u>Model Answer</u> Pag	ge No: 08/12	<u>)</u>
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	f)	3. Excess penetrant removal: After dwell time is over, the		
	<i>,</i>	excess penetrant is removed from the surface carefully		
		4. Application of developer: A thin layer of developer is applied		
		over the surface. The role of developer is to pull the trapped		
		penetrant out of the crack this provides good visibility of crack.		
		Developer with penetrant		
		Developer without penetrant		
		Alt and a set of the s		
		5.Inspection & evalution of defects: Surface of the specimen is se	en	
		under white light or ultraviolet or laser light. The crack can be		
		visualized under light.		
		Crack		
		(Inspection under light)		
		6. Post cleaning: After inspection the surface of the specimen is		
		cleaned & the specimen can be used for its intended purpose.		

Subje	ct Code	e: 17202 <u>Model Answer</u> Page N	lo: 09/12	<u>)</u>
Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	Stepwise Solution	IVIALKS	Marks
3)		Attempt any FOUR of the following:		16
		A train crosses a tunnel in 25 sec. At the entry of tunnel, its velocity		4
	a)	is 36 km/hr and at the exit of tunnel, velocity becomes 72 km/hr.		
		find length of the tunnel.	2	
		Formula and conversion	2 2	
		Answer with unit	2	
		Given,		
		t = 25 sec. u = 36 km/hr		
		$u = \frac{36 \times 1000}{60 \times 60}$		
		60×60 u = 10 m/s.		
		u = 10 m/s. v = 72 km/hr.		
		72×1000		
		$v = \frac{72 \times 1000}{60 \times 60}$		
		$\mathbf{v} = 20 \mathbf{m/s}$		
		Length of tunnel = Distance covered = $s = ?$		
		We have,		
		$a = \frac{v - u}{t} = \frac{20 - 10}{25}$		
		$a = 0.4 m/s^2$		
		Now.		
		$v^2 = u^2 + 2as$		
		$s = \frac{v^2 - u^2}{2a} = \frac{(20)^2 - (10)^2}{2 \times (0.4)}$		
		s = 375 m.		
		Length of tunnel = $s = 375$ m		
L	I			L

larks	Total
Iui Ko	Marks
	4
	4

WINTER-2015 EXAMINATIONSubject Code: 17202Model AnswerPage No: 11/12					
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks	
3)	c)	In first part only battery cell of known emf E is taken in a circuit and balancing length L is determined. Potential gradient = E / L Now, Thermocouple is taken in a circuit for different temperatures t_1, t_2, t_3 different balancing lengths L_1, L_2, L_3 are recorded then using formulae E_1 = Potential gradient x L_1 E_2 = Potential gradient x L_2 E3 = Potential gradient x L_3 Different emfs at different temperatures are recorded and the graph is plotted.		Marks	
	d)	Thus by knowing emf E at any unknown temperature, its corresponding unknown temperature t can be determined as shown in graph. Thus thermouple is used as a thermometer. If a light of wavelength 3000 A ⁰ is incident on metal surface of work function 5 eV,will the electron be ejected or not? Given h= 6.63 x 10 ⁻³⁴ Js, $C = 3 x 10^8$ m/s.		4	
		Each Formula Answer with Unit Conclusion	1 1 1		
		$\nu = \frac{c}{\lambda} = \frac{3 \times 10^8}{3000 \times 10^{-10}}$			
		$v = 1 \times 10^{15} Hz$			
		$v_0 = \frac{w_0}{h} = \frac{5 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$			
		$v_0 = 1.206 \text{ x } 10^{15} \text{ Hz}$			
		Since $v < v_0$ electrons will not be emitted.			

Subje	ct Code	e: 17202 <u>Model Answer</u> Page N	Jo: 12/12	2
Que.	Sub.	Stepwise Solution	Marks	Total
	-		ivitar K5	
No. 3)	Que. e)	 Stepwise Solution State engineering and scientific applications of X-rays. Two Engineering application. Engineering Application of X- Rays X- rays are used to detect the cracks in the body of aero plane or motor car. X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control. X- rays are used to detect flaws or cracks in metal jobs. X- rays are used to detect racks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to detect cracks in the wall. X- rays are used to study structure of crystal. They are used to study structure of rubber, plastic ,cellulose. They are used to study structure of organic molecules. State any four properties of LASER light . Any four properties Properties Properties i) The light is coherent: The light with waves, all exactly in same phase. ii) The light is monochromatic: The light produces sharp focus. iv) The beam is extremely intense: The light has extreme brightness 	Marks 2 2	4