

### SUMMER- 2018 Examinations Model Answer

Page 1 of 15

### Important suggestions to examiners:

Subject Code: 22221

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.1        | Attempt any FIVE : 10 Marks                                                                 |
|------------|---------------------------------------------------------------------------------------------|
| <b>a</b> ) | Define reluctance and flux density.                                                         |
| Ans:       | i) Reluctance (s) :- (1 Marks)                                                              |
|            | Reluctance is the property of the substance which opposes the creation of flux in it.       |
|            | ii) flux density:- (1Mark)                                                                  |
|            | Magnetic flux is passing perpendicularly per unit area is called magnetic flux              |
|            | density. $B = \varphi / A W b / m^2$ $B = Magnetic density \varphi = flux a = Area$         |
|            |                                                                                             |
| <b>b</b> ) | Define frequency and time period.                                                           |
| Ans:       | (i) Frequency :(1 Mark)                                                                     |
|            | The total number of cycles per second.                                                      |
|            | ii) Time period:(1 Mark)                                                                    |
|            | The time (in sec) required by an alternating quantity to complete its one cycle is known as |
|            | time period.                                                                                |
| c)         | State units for active power, relative power, apparent power.                               |
| Ans:       | i) Active Power (P):- (1/2 Mark)                                                            |
|            | The active power is defined as the average power Pavg taken by or consumed by the given     |
|            | $P = V.I.Cos\phi$ Unit: - Watt OR Kilowatt                                                  |



|            | Subject Code                 |                                                             | SUMMER- 2018 Ex<br>Model A pawe                   | aminations                                               |    |
|------------|------------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|----|
|            | Subject Code                 | : 22221                                                     | <u>Woder Answe</u>                                | <u>er</u> Page 2 01 15                                   |    |
|            | ii) Reactive                 | e Power (Q):-                                               |                                                   | (1/2 Mark)                                               |    |
|            | of ang<br>Q=                 | The reactive po<br>gle between voltage (<br>V.I. sin $\phi$ | wer is defined as the p<br>V) and current (I) i.e | product of voltage and current (V, I) and sine e. $\phi$ |    |
|            | Ur                           | nits: - VAR <b>OR</b> KV                                    | AR                                                |                                                          |    |
|            | iii) Appare                  | ent power (s):-                                             |                                                   | (1 Mark)                                                 |    |
|            |                              | Apparent power                                              | is defined as the proc                            | luct of rms values of voltage (v) and current            |    |
|            | (I) it                       | is given by                                                 |                                                   |                                                          |    |
|            |                              | S=V.I                                                       | Units: - VA OR                                    | KVA                                                      |    |
|            |                              |                                                             |                                                   |                                                          |    |
| d)         | Define phase                 | e sequence in three                                         | phase system.                                     |                                                          |    |
| Ans:       | The order i called phase     | n which the voltage sequence.                               | s in the three phase s                            | upply reach their maximum positive values is (2 Mark)    | \$ |
| <u>e)</u>  | List differen                | nt types of DC moto                                         | rs.                                               |                                                          |    |
| Ans:       | Types of D                   | C Motor :-<br>Shupt Motor                                   |                                                   | ( 2 Mark)                                                |    |
|            | I) DC                        |                                                             |                                                   |                                                          |    |
|            | ii) DC                       | Series Motor                                                |                                                   |                                                          |    |
|            | iii) DC                      | Compound Motor:                                             |                                                   |                                                          |    |
|            |                              | a                                                           | ) Short Shunt compo                               | und motor                                                |    |
|            |                              | b                                                           | ) Long short compo                                | und motor                                                |    |
|            |                              |                                                             | Or                                                |                                                          |    |
|            |                              | a                                                           | ) Cumulative compo                                | und DC motor                                             |    |
|            |                              | b                                                           | ) Differential compo                              | and DC motor                                             |    |
|            |                              |                                                             |                                                   |                                                          |    |
| <b>f</b> ) | Select suitat                | ble single phase mot<br>Ioma Miyar                          | or for each of the fol                            | lowing :                                                 |    |
| Ans:       | (i) <b>Fan</b> (ii) <b>h</b> | Aotor required for fai                                      | n: Capacitor start indu                           | ction motor (ceiling fan) (1 Mark)                       |    |
|            | (ii) H                       | Iome mixer: Univers                                         | al motor.                                         | (1 Mark)                                                 |    |
| <b>g</b> ) | State main d                 | lifference between l                                        | ELCB and MCB.                                     |                                                          |    |
|            |                              |                                                             |                                                   | ( 2 Mark                                                 | )  |
|            | Point                        | E                                                           | LCB                                               | МСВ                                                      |    |
|            |                              | ELCB operates on                                            | leakage current i.e.                              | MCB operates on phase current. It is                     |    |
| Ans:       |                              | difference between                                          | Phase and neutral                                 | used to disconnect the circuit when there                |    |
|            |                              | current and it is use                                       | ed to disconnect the                              | is over load/short circuit condition.                    |    |
|            |                              | circuit when there                                          | is earth leakage.                                 |                                                          |    |
|            | <b></b>                      |                                                             |                                                   |                                                          |    |



#### SUMMER- 2018 Examinations N/L- J-1 A

|        | Subject (                                                                                                                                                                                                                                                | Code: 22221                     | <b>Model Answer</b>                | Page 3 of 15                          |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|---------------------------------------|--|--|--|
| 0.2    | Attempt                                                                                                                                                                                                                                                  | t any THREE :                   |                                    | 12 Marks                              |  |  |  |
| a)     | Explain dynamically induced EMF and statically induced EMF.                                                                                                                                                                                              |                                 |                                    |                                       |  |  |  |
| Ans:   | i) Dynar                                                                                                                                                                                                                                                 | nically induced emf:            |                                    | ( <b>2 Mark</b> )                     |  |  |  |
|        |                                                                                                                                                                                                                                                          | ght about by moving the coil in |                                    |                                       |  |  |  |
|        | stat                                                                                                                                                                                                                                                     | ionary field or by movin        | tionary conductor. Then the e.m.f. |                                       |  |  |  |
|        | ind                                                                                                                                                                                                                                                      | uced in coil or conductor       | is known as "Dynamically induc     | ced e.m.f.                            |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 | $E = B l. v. sin\theta$ volts      |                                       |  |  |  |
|        | ii) Statio                                                                                                                                                                                                                                               | cally induced EMF.              |                                    | ( <b>2 Mark</b> )                     |  |  |  |
|        |                                                                                                                                                                                                                                                          | In the Statically in            | nduced emf flux linked with coil   | or winding changes (d $\Phi$ /dt) and |  |  |  |
|        | c                                                                                                                                                                                                                                                        | coil or winding is stationa     | ary such induced emf is called St  | atically induced emf                  |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 | $E = -N (d\Phi/dt)$                |                                       |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 |                                    |                                       |  |  |  |
| b)(i)  | Differentiate AC and DC quantity w.r.t. time varying waveform.                                                                                                                                                                                           |                                 |                                    |                                       |  |  |  |
| Ans:   | Differen                                                                                                                                                                                                                                                 | tiate DC supply with A          | C supply:                          | ( 2 Mark )                            |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 |                                    |                                       |  |  |  |
|        | S.No.                                                                                                                                                                                                                                                    | Points                          | AC Supply                          | DC Supply                             |  |  |  |
|        | 1.                                                                                                                                                                                                                                                       | Wave form                       | O Magnitude<br>Time                | O<br>Direct Current                   |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 | Alternating Current                |                                       |  |  |  |
| b)(ii) | Explain                                                                                                                                                                                                                                                  | impedance triangle.             |                                    |                                       |  |  |  |
| Ans:   | (2 Mark)<br>Impedance triangle is a vector representation of resistance, reactance and impedance of AC circuit. If<br>is a right angled triangle in which perpendicular sides represent resistance and reactance and<br>hypotenuse represents impedance. |                                 |                                    |                                       |  |  |  |
|        |                                                                                                                                                                                                                                                          |                                 | Z<br>R<br>R                        |                                       |  |  |  |



## SUMMER-2018 Examinations

Subject Code: 22221

Model Answer

Page 4 of 15

| c) (i)  | Write any<br>(i) Step u | y two difference between each of the follo<br>p transformer and step down transform           | owing :<br>er.                                                                                    |
|---------|-------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Ans:    | Step up                 | transformer and step down transformer                                                         | (Any two points 2 Mark)                                                                           |
|         | S.No.                   | Step-up transformer                                                                           | Step-down transformer                                                                             |
|         | 1.                      | No of turns of secondary windings are greater than primary                                    | No of turns of secondary are smaller than primary.                                                |
|         | 2                       | Secondary voltage is greater than primary                                                     | Secondary voltage is smaller than primary.                                                        |
|         | 3                       | Secondary current rating is less than<br>primary current rating                               | Secondary current rating is greater than primary.                                                 |
| c) (ii) | ii) Balanc              | ced load and unbalanced load in three pl                                                      | nase system.                                                                                      |
| Ans:    | Balan                   | ced load and unbalanced load in three p                                                       | hase system (Any two points 2 Mark)                                                               |
|         | Sr. No.                 | Balanced load                                                                                 | Unbalanced load                                                                                   |
|         | 1.                      | All three phase current and line<br>currents are equal                                        | All three phase current and line currents are not equal                                           |
|         | 2                       | Neutral current is zero if the load is three phase four wire                                  | Neutral current is not zero if the load is three phase four wire                                  |
|         | 3                       | Phase displacement between phase<br>voltage and phase current of all three<br>phases is equal | Phase displacement between phase voltage<br>and phase current of all three phases is not<br>equal |
| d       | Evoloin 1               | vorking principle of three phase induction                                                    |                                                                                                   |
| Ans:    |                         | For King principle of three phase induction                                                   | (4 Mark)                                                                                          |
|         | Working                 | <b>principle of 3-phase induction motor:</b><br>When 3-phase stator winding is energized f    | rom a 3-phase supply, a rotating magnetic field                                                   |
|         | 15                      | s set up in air gap which rotates round the s                                                 | stator at synchronous speed Ns (= $120 \text{ f/P}$ ).                                            |
|         | → T<br>s                | The rotating field passes through the air gap tationary.                                      | and cuts the rotor conductors, which as yet, are                                                  |
|         | 2                       | Due to the relative speed between the rotat                                                   | ing flux and the stationary rotor e m f are                                                       |
|         | i                       | nduced in the rotor conductors.                                                               |                                                                                                   |
|         |                         | Since the rotor circuit is short-circuited, cu                                                | rrents start flowing in the rotor conductors.                                                     |



Subject Code: 22221

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

# SUMMER– 2018 Examinations <u>Model Answer</u> produces flux

Page 5 of 15

|            | These rotor current produces flux                                                            |                         |
|------------|----------------------------------------------------------------------------------------------|-------------------------|
|            | <ul> <li>According to faradays law of electromagnetic induction torque is produce</li> </ul> | ced due to              |
|            | interaction between stator and rotor flux                                                    |                         |
|            | > Which tends to move the rotor.so rotor starts rotating                                     |                         |
|            | > In the same direction as the rotating field according to Lenz's law.                       |                         |
|            |                                                                                              |                         |
| Q.3        | Attempt any THREE :                                                                          | 12 Marks                |
| <b>a</b> ) | Describe Fleming's right hand rule and left hand rule.                                       |                         |
| Ans:       | 1) Fleming's Right Hand Rule:                                                                | (2 Mark)                |
|            | Arrange three fingers of right hand mutually perpendicular to each oth                       | er, if the first figure |
|            | indicates the direction of flux, thumb indicates the direction of motion of the              | conductor, and then     |
|            | the middle finger will point out the direction of induced current.                           |                         |
|            |                                                                                              |                         |
|            | 2) Left hand rules:                                                                          | ( 2 Mark)               |
|            | According to Fleming's left hand rule if we stretch the thumb, the co                        | enter finger and the    |
|            | middle finger of our left hand such that they are mutually perpendicular to eac              | h other. If the center  |
|            | finger gives the direction of current and middle finger points in the directi                | on of magnetic field    |
|            | then the thumb points towards the direction of the force or motion of the condu              | uctor.                  |
|            |                                                                                              |                         |
| <b>b</b> ) | Describe working principle of a transformer.                                                 |                         |
| Ans:       | working principle of a transformer:                                                          | (4 Marks)               |
|            |                                                                                              |                         |
|            | Applied Alternating<br>Current Supply                                                        |                         |
|            | Working Principle: -                                                                         |                         |
|            | > The primary winding is connected to AC supply an ac current starts flowing                 | ıg through it.          |
|            | > The AC primary current produces an alternating flux in the core.                           |                         |
|            | > This Changes flux gets linked with the secondary winding through the core                  | ;                       |
|            | > The varying flux will induce voltage into the secondary winding according                  | to the faraday's        |



| Subject Code: 22221       Model Answer       Page 6 of 15         laws of electromagnetic induction.       OR         A Transformer works on the principle of Faradays law of electromagnetic induction         When their primary winding is connected to a.c supply, applied alternating voltage circulates an alternating current through it.         This current flowing through the primary winding produces an alternating magenetic flux (Ø). This flux links with secondary winding through the magenetic core & induces an emfinit according to the faraday's laws of electromagnetic induction.                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iaws of electromagnetic induction.         OR         A Transformer works on the principle of Faradays law of electromagnetic induction         When their primary winding is connected to a.c supply, applied alternating voltage circulates         an alternating current through it.         This current flowing through the primary winding produces an alternating magenetic         flux (Ø). This flux links with secondary winding through the magenetic core & induces an emf         in it according to the faraday's laws of electromagnetic induction.                                                                          |
| OR<br>A Transformer works on the principle of Faradays law of electromagnetic induction<br>When their primary winding is connected to a.c supply, applied alternating voltage circulates<br>an alternating current through it.<br>This current flowing through the primary winding produces an alternating magenetic<br>flux (Ø).This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                    |
| A Transformer works on the principle of Faradays law of electromagnetic induction<br>When their primary winding is connected to a.c supply, applied alternating voltage circulates<br>an alternating current through it.<br>This current flowing through the primary winding produces an alternating magenetic<br>flux (Ø).This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                          |
| When their primary winding is connected to a.c supply, applied alternating voltage circulates<br>an alternating current through it.<br>This current flowing through the primary winding produces an alternating magenetic<br>flux (Ø). This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                              |
| When their primary winding is connected to a.c supply, applied alternating voltage circulates<br>an alternating current through it.<br>This current flowing through the primary winding produces an alternating magenetic<br>flux (Ø). This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                              |
| an alternating current through it.<br>This current flowing through the primary winding produces an alternating magenetic<br>flux (Ø).This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                                                                                                                                |
| This current flowing through the primary winding produces an alternating magenetic flux (Ø). This flux links with secondary winding through the magenetic core & induces an emfinit according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                                                                                                                                                                             |
| flux (Ø). This flux links with secondary winding through the magenetic core & induces an emf<br>in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| in it according to the faraday's laws of electromagnetic induction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c) Classify three phase induction motor and compare them on any four points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ans: Classify three phase induction motor : (2 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Squirrel cage I.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Slip ring 3-Ph I.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Comparison : (Any four points each 1/2 Mark, Total 2 Marks )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S.No 3-phase squirrel cage LM Slip ring 3-Ph LM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1     Rotor is in the form of bars     Rotor is in the form of 3-ph winding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 No slip-ring and brushes Slip-ring and brushes are present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 External resistance cannot External resistance can be connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| be connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4 Small or moderate starting torque High Starting torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 Starting torque is of fixed Starting torque can be adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 Simple construction Completed construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7 High efficiency Low efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 Less cost More cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frequent maintenance due to slip-ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and brushes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10     Size is compact for same HP     Relatively size is larger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     Size is compact for same HP     Relatively size is larger       11     Speed control by stator control     Speed can be control by stator & rotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10       Size is compact for same HP       Relatively size is larger         11       Speed control by stator control method only       Speed can be control by stator & rotor control method                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10       Size is compact for same HP       Relatively size is larger         11       Speed control by stator control<br>method only       Speed can be control by stator & rotor<br>control method                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| and brushes.       10       Size is compact for same HP       Relatively size is larger         11       Speed control by stator control<br>method only       Speed can be control by stator & rotor<br>control method         d)       Explain concept of Limit switch and float switch.       (2) Morkes                                                                                                                                                                                                                                                                                                                                    |
| and brushes.       10       Size is compact for same HP       Relatively size is larger         11       Speed control by stator control<br>method only       Speed can be control by stator & rotor<br>control method         d)       Explain concept of Limit switch and float switch.         Ans:       i) Limit switch:-       (2 Marks)         Limit switch is a contact type switch device which is used to detect position of an object. If                                                                                                                                                                                         |
| and brushes.       and brushes.         10       Size is compact for same HP         11       Speed control by stator control         method only       control method                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and brushes.       10       Size is compact for same HP       Relatively size is larger         11       Speed control by stator control       Speed can be control by stator & rotor control method         d)       Explain concept of Limit switch and float switch.         Ans:       i) Limit switch:-       (2 Marks)         Limit switch is a contact type switch device which is used to detect position of an object. It has a spring loaded lever and a micro switch. The micro switch consists of set of contacts (NO and NC). When the target object is near to limit switch, the lever is pressed. It operates the microswitch |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

|            |                                                                   |                                     | SUMMER- 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Examinations                                                                                                                                                                                     |  |  |  |
|------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | Subje                                                             | ect Co                              | de: 22221 Model Ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wer Page 7 of 15                                                                                                                                                                                 |  |  |  |
|            |                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 14 NO<br>12 NC                                                                                                                                                                                 |  |  |  |
|            | ii) Fl                                                            | oat sv                              | vitch:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2 Marks)                                                                                                                                                                                        |  |  |  |
|            | It has<br>move<br>down                                            | Float<br>s float<br>es upw<br>nward | eat switch is a contact type switching deviation and a micro switch. The float rests on the vard and microswitch is operated and contacts the microswitch is released and contacts the microswitch is rel | ice which is used to detect level of fluid in tank.<br>e fluid surface. As the level is increased, float<br>tact positions are changed. When the float move<br>return to their normal condition. |  |  |  |
| 0.4        | Atter                                                             | mnt a                               | ny THREE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 Marks                                                                                                                                                                                         |  |  |  |
| <u></u> a) | Compare electric circuit and magnetic circuit on any four points. |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  |  |  |  |
| Ans:       | Compare Magnetic and Electric circuit:                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  |  |  |  |
|            |                                                                   |                                     | ( Any Four <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oint expected : 1 Mark each, total 4 Marks)                                                                                                                                                      |  |  |  |
|            | S                                                                 | 5.No                                | Electric circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnetic circuit                                                                                                                                                                                 |  |  |  |
|            |                                                                   | 1                                   | Path traced by the current is known as electric current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The magnetic circuit in which magnetic flux flow                                                                                                                                                 |  |  |  |
|            |                                                                   | 2                                   | EMF is the driving force in the electric circuit. The unit is Volts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MMF is the driving force in the magnetic circuit. The unit is ampere turns.                                                                                                                      |  |  |  |
|            |                                                                   | 3                                   | There is a current I in the electric circuit which is measured in amperes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | There is flux $\varphi$ in the magnetic circuit which is measured in the weber.                                                                                                                  |  |  |  |
|            |                                                                   | 4                                   | The flow of electrons decides the current in conductor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The number of magnetic lines of force decides the flux.                                                                                                                                          |  |  |  |
|            |                                                                   | 5                                   | Resistance (R) oppose the flow of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reluctance (S) is opposed by magnetic path                                                                                                                                                       |  |  |  |
|            |                                                                   |                                     | current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to the flux.                                                                                                                                                                                     |  |  |  |
|            |                                                                   |                                     | The unit is Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Unit is ampere turn/weber.                                                                                                                                                                   |  |  |  |
|            |                                                                   | 0                                   | $\kappa = \rho$ . <i>I</i> /a. Directly proportional to l.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S = \nu (\mu_0 \mu_r a).$<br>Directly proportional to l. Inversely                                                                                                                              |  |  |  |



# SUMMER- 2018 Examinations

|      |                                                            |                       |                                | SUMMER-2                                                       | 010            |                                                                                             |                                             |
|------|------------------------------------------------------------|-----------------------|--------------------------------|----------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------|---------------------------------------------|
|      | Subject                                                    | Code: 22              | 221                            | Model                                                          | Ans            | wer                                                                                         | Page 8 of 15                                |
|      | 7                                                          | Inve<br>Dep<br>The    | rsely pr<br>ends on<br>current | oportional to a.<br>nature of material.<br>I = EMF/ Resistance |                | proportional to $\mu = \mu_0 \mu_r$ .<br>Inversely proportional to<br>The Flux = MMF/ Reluc | a tance                                     |
|      | 8                                                          | B The                 | current                        | density                                                        |                | The flux density                                                                            |                                             |
|      | 9                                                          | ) Kirc<br>is ap       | hhoff cu<br>plicable           | arrent law and voltage late to the electric circuit.           | W              | Kirchhoff mmf law and f<br>applicable to the magnet                                         | flux law is<br>ic flux.                     |
| b)   | Identif<br>Brush.                                          | y mater<br>Pole       | ial used                       | l for each of the follo                                        | win            | g parts of DC motor :                                                                       | Winding, Armature,                          |
| Ans: | Materia                                                    | al used f             | for DC                         | motor                                                          |                | (Any four p                                                                                 | ooints each 01 Marks)                       |
|      |                                                            | Γ                     | Sr.No                          | Parts of DC motor                                              | Μ              | aterial used                                                                                |                                             |
|      |                                                            | ŀ                     | 1.                             | Winding                                                        | Co             | ooper or Aluminum                                                                           |                                             |
|      |                                                            | -                     | 2.                             | Armature                                                       | Th             | nin silicon steel stamping                                                                  |                                             |
|      |                                                            | -                     | 3.                             | Brush                                                          | Ca             | arbon or graphite                                                                           |                                             |
|      |                                                            | ľ                     | 4.                             | Pole                                                           | Th             | nin silicon steel stamping                                                                  |                                             |
| c)   | Explain                                                    | n with di             | agram                          | field control method of                                        | f spe          | eed of DC shunt motor.                                                                      |                                             |
| Ans: |                                                            |                       |                                |                                                                |                | (Diagram 2 Marks H                                                                          | Explanation 2 Marks )                       |
|      | The characteristic equation for dc shunt motor is given by |                       |                                |                                                                |                |                                                                                             |                                             |
|      | $N \propto \frac{E_b}{\phi}$                               | and V                 | $E = E_b - E_b$                | $I_a R_a$                                                      |                |                                                                                             |                                             |
|      | From al current                                            | bove equ<br>the speed | ations, o<br>d can be          | dc shunt motor speed N<br>increased above norma                | is in<br>l spe | versely proportional to flu<br>eed. This is field control of                                | x. By decreasing field<br>f dc shunt motor. |
|      |                                                            |                       | A1                             | Start<br>Rheostat                                              |                | N† 1                                                                                        |                                             |

\_\_\_\_\_



Subject Code: 22221

### SUMMER- 2018 Examinations Model Answer

Page 9 of 15





|      |                                                                                                                      | SUMMER– 2018 Examinations                        |                           |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|--|--|--|--|
|      | Subject Code: 22221                                                                                                  | Model Answer                                     | Page 10 of 15             |  |  |  |  |
| e)   | Explain need of earthin                                                                                              | ng of electrical equipment's or machines.        |                           |  |  |  |  |
| Ans: | Need of earthing of ele                                                                                              | ctrical equipment's or machines:                 |                           |  |  |  |  |
|      |                                                                                                                      | (Any Four point are expected: 1 M                | Aark each, Total 4 Marks) |  |  |  |  |
|      | 1. Earthing provide                                                                                                  | es protection to the electrical machinery due to | eakage current.           |  |  |  |  |
|      | 2. Earthing provide                                                                                                  | es protection to Tall Building & structure again | nst lightening stroke     |  |  |  |  |
|      | 3. Earthing is prote                                                                                                 | ects human from shocks.                          |                           |  |  |  |  |
|      | 4. To provide an alternative path for the leakage current to flow towards earth.                                     |                                                  |                           |  |  |  |  |
|      | 5. To save human life from danger of electrical shock due to leakage current.                                        |                                                  |                           |  |  |  |  |
|      | 6. To provide safe path to dissipate lightning and short circuit currents.                                           |                                                  |                           |  |  |  |  |
|      | 7. To provide stable                                                                                                 | e platform for operation of sensitive electronic | c equipment's.            |  |  |  |  |
| 0.5  | Attempt any TWO :                                                                                                    |                                                  | 12 Marks                  |  |  |  |  |
|      | Calculate each of the f                                                                                              | ollowing for a sinusoidal voltage source hav     | ving equation v = 400 sin |  |  |  |  |
| a)   | $\left(314 t \frac{\pi}{6}\right)$ volt. (i) Maximum value (ii) Frequency (iii) Time period v) Phase (v) RMS voltage |                                                  |                           |  |  |  |  |
|      | (vi) Form factor.                                                                                                    |                                                  |                           |  |  |  |  |
| Ans: | $v = 400\sin(314t -$                                                                                                 | $-\frac{\pi}{6}$ )                               |                           |  |  |  |  |
|      | Comparing the above equation with                                                                                    |                                                  |                           |  |  |  |  |
|      | $v = V_m \sin(\omega t \cdot$                                                                                        | -	heta)                                          |                           |  |  |  |  |
|      | i) Maximum va                                                                                                        | alue = $400$ V                                   | (1 Marks)                 |  |  |  |  |
|      | ii) Frequency =                                                                                                      | f <u>314</u> =50Hz                               | (1 Marks)                 |  |  |  |  |
|      | iii) Time period                                                                                                     | $= 1/f = 2 \times \pi_{20mS}$                    | (1 Marks)                 |  |  |  |  |
|      | iv) Phase = $30^{\circ}$                                                                                             |                                                  | (1 Marks)                 |  |  |  |  |
|      | v) RMS voltage                                                                                                       | $e = \frac{V_m}{\sqrt{2}} = 400/1.414 = 282.88$  | (1 Marks)                 |  |  |  |  |
|      | vi) Form Factor                                                                                                      | $= 1.11 \qquad \qquad \mathbf{(1 Marks)}$        |                           |  |  |  |  |
|      |                                                                                                                      |                                                  |                           |  |  |  |  |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

|      | SUMMER- 2018 Examinations                                                                                                                                                                       |                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|      | Subject Code: 22221Model Answer                                                                                                                                                                 | Page 11 of 15             |
|      | Calculate current per phase, total active power, total reactive pow fig. 1.                                                                                                                     | er for a circuit shown in |
| b)   | 400 V (3+j4) Ω<br>(3+j4) Ω<br>(3+j4) Ω<br>Fig. 1                                                                                                                                                |                           |
| Ans: | Current per phase = Vph/Zph                                                                                                                                                                     | (1 Marks)                 |
|      | Zph= 5                                                                                                                                                                                          |                           |
|      | Curent per phase = $400 / 5 = 80 $ A                                                                                                                                                            | (1 Marks)                 |
|      | Power factor of load = $R/Z= 3/5=0.6$                                                                                                                                                           |                           |
|      | Active power =                                                                                                                                                                                  |                           |
|      | $Z_{ph} = 5\Omega$                                                                                                                                                                              |                           |
|      | $I_{ph} = 400 / 5 = 8A$                                                                                                                                                                         |                           |
|      | $P_{ACTIVE} = 3V_{PH}I_{PH}COS\phi$                                                                                                                                                             | (1 Marks)                 |
|      | $= 3 \times 400 \times 80 \times (3/5)$                                                                                                                                                         |                           |
|      | =57.6kW                                                                                                                                                                                         | (1 Marks)                 |
|      | $Q_{REACTIVE} = 3V_{PH}I_{PH}SIN\phi$                                                                                                                                                           | (1 Marks)                 |
|      | $= 3 \times 400 \times 80 \times (4 / 5) = 76.8 kVAr$                                                                                                                                           | (1 Marks)                 |
|      |                                                                                                                                                                                                 |                           |
| c)   | Sketch schematic diagram for each of the following :<br>(i) Shaded pole motor (ii) Split phase motor (iii) Universal mo<br>induction run (v) Capacitor start capacitor run (vi) Permanent capac | tor (iv) Capacitor start  |
| Ans: | i) Shaded pole motor                                                                                                                                                                            | (1 Marks)                 |
|      | Shading bai                                                                                                                                                                                     |                           |
|      | Stator<br>Winding<br>Squirrel cage<br>rotor                                                                                                                                                     |                           |



Subject Code: 22221

### SUMMER– 2018 Examinations <u>Model Answer</u>

Page 12 of 15





#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)





|      |                     |                                                          | SUMMER- 2018                         | 8 Examinations                              |                     |
|------|---------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------|---------------------|
|      | Subject C           | ode: 22221                                               | Model An                             | iswer                                       | Page 14 of 15       |
|      |                     |                                                          | Z =                                  | R + jXL                                     |                     |
|      |                     | Z = 55.85 ∠57.                                           | .51 Ω — — — — — — -                  |                                             | -(1/2 mark)         |
|      | To F                | ind Current=                                             |                                      |                                             |                     |
|      |                     |                                                          |                                      |                                             |                     |
|      |                     | $I = \frac{V}{V}$                                        |                                      |                                             | (1/2 Mark)          |
|      |                     | Z                                                        | 220                                  |                                             |                     |
|      |                     |                                                          | $I = \frac{230}{5505 \times 5751} =$ | = <b>4</b> . <b>11</b> ∠ − 57.51 <i>amp</i> |                     |
|      |                     | I-4 11 Amn                                               | 55.85 Z57.51                         |                                             | (1/2 Mark)          |
|      |                     | 1–4.11Amp                                                |                                      |                                             | (1/2) (1/2)         |
|      | Active P            | ower:                                                    |                                      |                                             |                     |
|      |                     |                                                          |                                      |                                             |                     |
|      |                     | $\boldsymbol{P} = \boldsymbol{V} *$                      | ∗ <b>I</b> ∗ cos Ø                   | (1 Marl                                     | <b>x</b> )          |
|      |                     | P = 23                                                   | 0 * 4.11 * 0.53                      |                                             |                     |
|      |                     |                                                          |                                      |                                             |                     |
|      |                     | P = 501                                                  | 1.00 <i>watt</i>                     |                                             | - (1 Mark)          |
|      | Ractive             | Power:                                                   |                                      |                                             |                     |
|      |                     |                                                          |                                      |                                             |                     |
|      |                     | P = V *                                                  | ∗ <i>I</i> ∗ sin Ø                   | (1 Mark                                     | x)                  |
|      |                     | P = 23                                                   | 0 * 4.11 * 0.84                      |                                             |                     |
|      |                     |                                                          |                                      |                                             |                     |
|      |                     | P = 797                                                  | 7.34 <i>var</i>                      |                                             | (1 Mark)            |
|      |                     |                                                          |                                      |                                             |                     |
| b)   | Write an            | y two application                                        | ns for each of the follow            | wing :                                      |                     |
| D)   | (i) Servo           | -motor (ii) Brush                                        | less DC motor (iii) Ste              | pper motor                                  |                     |
| Ans: | Applica             | tions as follows                                         |                                      |                                             |                     |
|      | (i)                 | Servo motor:-                                            | •                                    | (Any Two                                    | noints - 2 Marks)   |
|      | (1)                 | 1) Position con                                          | trol systems                         | (1111) 1 (10                                |                     |
|      |                     | 2) CNC machin                                            | nes                                  |                                             |                     |
|      |                     | 3) Robotic hand                                          | ds                                   |                                             |                     |
|      | <i>(</i> <b>!</b> ) | <b>.</b>                                                 |                                      |                                             |                     |
|      | (11)                | Brushless dc m                                           | aotor                                | (Any Tw                                     | o points - 2 Marks) |
|      |                     | <ol> <li>Electric veni</li> <li>Electronic to</li> </ol> | icles                                |                                             |                     |
|      |                     | 2) Electronic to<br>3) Position con                      | Jys<br>htrol systems                 |                                             |                     |
|      |                     | <ul><li>4) Industrial au</li></ul>                       | itomation                            |                                             |                     |
|      |                     | , <u></u>                                                | ····                                 |                                             |                     |
|      | (iii)               | Stepper motor                                            |                                      | (Any Tw                                     | o points - 2 Marks) |
|      |                     | 1) Printers                                              |                                      |                                             |                     |
|      |                     | 2) CNC machin                                            | nes                                  |                                             |                     |
|      |                     | 3) Robotic hand                                          | as<br>al maabaniama                  |                                             |                     |
|      |                     | 4) valve contro                                          | of mechanisms                        |                                             |                     |



### SUMMER-2018 Examinations

Subject Code: 22221

Model Answer

Page 15 of 15

|       |                     | (4                                            | Any Six points each point - 1 Marks                                                                                 |
|-------|---------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Sr.No | POINTS              | FUSE                                          | МСВ                                                                                                                 |
| 1     | cost                | Fuse is cheap                                 | MCB is costly                                                                                                       |
| 2     | Size                | Fuse small size                               | MCB large size                                                                                                      |
| 3     | Ratings             | Fuse rating is in Amperes                     | MCB rating is also in Amperes but<br>its available in selected current<br>ratings like 1A,2A, 5A,25A                |
| 4     | Switching operation | Fuse wire is melted and the circuit is broken | In MCb there is bimetallic strip<br>which bends and operates the trip<br>circuit to disconnect load from<br>supply. |
| 5     | Maintenance         | Fuse requires replacement                     | MCB is a resettable protection                                                                                      |
| 6     | Appplication        | short circuit protection                      | Overload and short circuit protection                                                                               |

-----END-----