

Summer- 2018 Examinations

Subject Code: 22213

Model Answer

Page 1 of 13

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following :	10 Marks		
	Name the components of following symbols :			
a)	(i) $A \longrightarrow K$ ii) $A \longrightarrow K$			
Ans	i) A K : Semiconductor Diode	(1 Mark)		
	ii) A K : Light Emitting Diode	(1 Mark)		
b)	Define the term 'Ripple factor' for rectifier.			
Ans	Ripple factor: The ratio of RMS value of ac component present in the wave	form to the dc		
	component in the waveform is called as ripple factor. (2 Marks)			
	OR			
	The unwanted AC components present in output waveform of a rectifier is called as ripple			
	factor			
c)	State relation between emitter current (I_E) , Base current $(I_B) \cdot$ and colloof BJT.	ector current (Ic)		
Ans	$\mathbf{I}_{\mathbf{E}} = \mathbf{I}\mathbf{C} + \mathbf{I}_{\mathbf{B}} $ (2 Marks)			
	$\mathbf{I}_{\mathrm{E}} = (1 + \beta) \mathbf{I}_{\mathrm{B}}$			
d)	Write three terminal voltage regulator IC for obtaining : (i) + 5V (ii) -12V			
Ans	(i) Terminal voltage regulator IC for obtaining : + 5V : IC 7805	(1 Mark)		
	(ii) Terminal voltage regulator IC for obtaining : - 12V : IC 7912	(1 Mark)		

Summer- 2018 Examinations				
Subje	Subject Code: 22213Model AnswerPage 2 of T			
e)	e) 'Germanium diode knee voltage is lower than silicon diode knee voltage.' Justify.			
Ans	Justification: (2 Marks)			
	The band gap between conduction and valence band for Germanium (0.66eV) is less as			
	compared to Silicon (1.11eV). Hence less energy is required to start conduction in Germanium			
	diode			
f)	Define the term 'Load Regulation'.			
Ans	Load Regulation : (2 Marks)			
	Load regulation is the ability of a power supply to maintain a constant output voltage			
	irrespective of any changes in load current.			
	$\begin{pmatrix} V & -V \end{pmatrix}$			
	Load regulation = $\frac{V_{NL} + V_{FL}}{V_{FL}}$ ×100%			
	(V_{FL})			
<u>g</u>)	Draw symbol and write truth table of EX-OR gate.			
Ans	Symbol and truth table of EX-OR: (1 Mark for symbol & 1 Mark for Truth table)			
	Exclusive-OR gate			
	Input _B			
	A B Output			
Q.2	Attempt any THREE of the following : 12 Marks			
a)	State working principle of photo diode. List out its three applications.			
Ans:	Diagram of photo diode : (1 Mark)			
	Incident photons			
	5 5 5 5 5			
	\$ \$ \$ \$ \$ 			
	P-type N-type			
	Depletion or intrinsic region			
	Ŭ, I I I I I I I I I I I I I I I I I I I			

Summer- 2018 Examinations

Subject Code: 22213

Model Answer

Page 4 of 13

c)	Compare BJT common base configuration with common collector configuration on the basis of (i) Current gain (ii) Voltage gain (iii) Input impedance (iv) Output impedance			
Ans:	Comparison :	Comparison : (4 Marks)		
	Parameter	Common Base	Common Collector	
	Current gain	Low (About 1)	High (1+β)	
	Voltage gain	High	1	
	Input impedance	Low	High	
	Output impedance	High	Low	
<u>d)</u>	Sketch block diagram	<u>n of D.C. regulated power supply.</u>	State functions of each block.	
	AC mains Transformer	Rectifier Filter circuit circuit ock:	Regulator Load Vo (2 Mark)	
	1) Transformer: It Converts an AC input source to AC required output without changing frequency.			
	transformer is step	up or step down transformer.		
	2) Rectifier:			
	It is a circuit wh	ich is used to convert AC into pulsa	ating DC. A rectifying diode is used.	
	3) Filter:			
	 It is a circuit used to convert pulsating DC into pure DC. A inductor and capacitors are used as filter 4) Voltage regulator: An unregulated DC voltage is converted into regulated DC voltage. IC 78XX & 79X series are used as regulator. 			

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

Summer- 2018 Examinations

Subject Code: 22213

Model Answer

Page 6 of 13

Subject Code: 22213

Summer- 2018 Examinations Model Answer

Page 8 of 13

		Summer- 20	18 Examinatio	ons	
Subje	ect Code: 22213	<u>Model</u>	Answer	Page 9 of 13	
	frequency. T	herefore for AC contents	inductor offe	rs high opposition, and hence block the	
	AC signals. For DC signal, freq.is zero $X_L=0.i.e.$ inductor acts as a short ckt. Thu			ductor acts as a short ckt. Thus all DC	
	signals from rectifier are given to load.				
	Applying KVL to the series inductor ckt.				
	$V_0 = V_R - I^* X_L$				
	For DC input F=0 and $X_L=0$. Therefore $V_0=V_{R_c}$. Thus DC components reach to load.				
	For AC input Freq.is high, X_L is high, $I^* X_L$ drop is high, therefore V_0 is small as				
	compared to V_R .				
	Inductor opposes change in current through it. So, current waveform is made smooth.				
	This filter operates properly and effectively for higher values of currents. Hence				
	increase in	current reduces ripple fa	ctor.		
	Rin	nle Factor: $RF = -$	R	(1 Mark)	
	Ripple Factor:- $KI' = \frac{1}{3\sqrt{2\omega L}}$ (1 Mark)				
Q.5	Attempt any T	WO of the following :		12 Marks	
(a)	A transistor is connected in common emitter (CE) configuration with collector supply		configuration with collector supply		
	Vcc of 8V. Voltage drop across resistance RC connected in series with collector is 0.5 V. The value of RC is 800 ohm. If alpha (α) equal to 0.96, calculate : (i) Collector-emitter				
	voltage (ii) Coll	ector current (iii) Base	current	· · · · · · · · · · · · · · · · · · ·	
Ans:	Given data :		0.00	N OF N	
	Vcc = 8	$\mathbf{K}\mathbf{C} = 800 \ \Omega$	$\alpha = 0.96$	$\mathbf{v}_{\mathrm{RC}}=0.5\ \mathbf{v}.$	
	By using	g Equations			
	(i)	Collector-emitter voltag	ge:	(2 Marks)	
		$\mathbf{V}_{\mathrm{CE}} = \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} \mathbf{R}_{\mathrm{C}}$			
		$V_{\rm CE} = 8 - 0.5 = 7.5 \ {\rm V}$			
	(ii) (ii)	Collector current :		(2 Marks)	
		$I_{C} = \frac{V_{CC} - V_{CE}}{2}$			
		= 0.625 mA			
	(iii)	Base current :		(2 Marks)	
		$I_B = \frac{I_C(1-\alpha)}{\alpha}$			
		- 26 04 - 4			

Subje	ct Code: 22213 Summer- 2018 Examinat Model Answer	tions Page 10 of 13			
b)	b) Sketch pin configuration of IC 723. State functions of each pin. Sketch circuit diagram for obtaining 6V output d.c. regulated voltage using IC 723.				
Ans:	(Configuration : 2 Mark, Function :	2 Marks & Diagram : 2 Marks)			
	1) Pin configuration of IC 723 :	(2 Mark)			
	NC 1 Current Limit 2 Current Sense3 Inverting Input 4 Non Inverting Input 5 Vref 6	 14 NC 13 Frequency Compensation 12 V+ 11 Vc 10 Vout 9 Vz 			
	V-1/	8 10			
	2) Functions of each pin:-	- (2 Marks)			
	 V+ and V-: These are the supply voltage terminals of the IC. V+ is the positive terminal and V- is the negative terminal. Non Inverting Input: This is the non-inverting input of the error amplifier whose output is connected to the series pass transistor. Reference voltage or a portion of it is given to the non-inverting input. 				
	Inverting Input: This is the inverting input of the error amplifier whose output is connected to the series pass transistor. Usually output voltage or a portion of it is given to the inverting input. This makes the output voltage constant.				
	V_{ref} : It is the reference voltage output of the IC. It is the output of voltage reference amplifier. Its output voltage is about 7.15V.				
	V_{out} : It is the output terminal of the IC. Usually output voltage ranges from 2 to 37V. This pin can provide up to 150mA current.				
	Current Limit: It is the base input of the current limiter transistor. This pin is used for current limiting or current fold back applications.				
	Current Sense: This is the emitter of current limiting transistor. This terminal is used with current limiting and current fold-back applications.				

Summer-2018 Examinations Subject Code: 22213 **Model Answer** Page 12 of 13 Implement the fundamental logic gates 'OR gate', 'AND gate', 'NOT gate' using only c) NAND gates. Fundamental logic gates 'OR gate', 'AND gate', 'NOT gate' using only NAND gates: Ans: (6 Marks) -Out AA=A NAND AB AB AND NAND NAND R ĀB NAND + B OR NAND NAND Q.6 Attempt any TWO of the following : 12 Marks Sketch circuit diagram of RC phase shift oscillator. If value of capacitor $C = C_1 = C_2 =$ $C_3 = 5$ pF and frequency of oscillation is 800 Hz, calculate value of resistor R, (R = R₁ = a) $R_2 = R_3$). Circuit diagram of RC phase shift oscillator Ans: (3 Marks) V_{CC} **R**₁ § ≥R_C -Output ╢ C₀ ∦ c ╢ С С R R CE R_E≷ or equivalent circuits Given data : fo= 800 Hz and C = 5 pFUsing Expression for frequency of oscillation $f_o = \frac{1}{2\pi(\sqrt{6})\text{CR}}$ (1 Marks)

Subje	ct Code: 22213	Summer- 2018 Examinations <u>Model Answer</u>	Page 13 of 13
	Putting values in above e	equation	
	$\mathbf{R}=16.2$	24 ΜΩ	(2 Marks)
b)	For common emitter configuration sketch input Characteristics for two different values of V _{CE} and output characteristics for two different values of I _B . Write formula for input resistance and output resistance.		
Ans:	(Input characteristics 2 Ma	arks & Output characteristic	s 2 Marks)
	Input characteris	stics Output o	characteristics
		V_{BE} V_{CE1} V_{CE1} V_{CE1} V_{BE} V_{CE1} V_{CE1	$I_{CEO} \qquad 0.4 \text{ mA}$ $0.3 \qquad 0.2 \qquad 0.1$ $I_{CEO} \qquad i_B = 0 \qquad 0.1$ $10 \qquad 15 \qquad 20 \qquad v_{CE} (V)$
	$r_i = \frac{\Delta V_{BE}}{\Delta I_B}$ for	$V_{CE} = constant$	(1 Mark)
	$r_o = \frac{\Delta V_{CE}}{\Delta I_C}$ for	I _B = constant	(1 Mark)
-)	Perform following number (i) $(589)_{10} = ()_2$	system conversion : (ii) (101101) ₂ =	()16
C)	(iii) $(413)_8 = ()_2$ (v) $(AC8)_3 = ()_2$	$(iv) (5AF)_{16} =$ $(vi) (106)_{16} =$	$()_{10}$
Ans:	$(V) (AC0)_{16} - (V)_2$	(100)8 –	(1 Mark for each)
	(i) $(589)_{10} = (100100110)$	1)2	
	(ii) $(101101)_2 = (2D)_{16}$		
	$(\mathbf{iii}) \ (413)_{8} = (100001011)$	1)2	
	(iv) $(5AF)_{16} = (1455)_{10}$		
	$(\mathbf{v}) \ (\mathbf{AC8})_{16} = (101011001)$	1000)2	
	$(vi) (106)_8 = (70)_{10}$		