

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Fundamentals of Chemical Engineering

Subject code :

22231

Page **1** of **19**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

O No		marks
Q No.	Answer	
1	Any five	10
1-a	Rate data: It is the data on concentration of reactants/ products with respect to	1
	time. It is used to find out the rate of reaction	
	Chemical Kinetics: It is the study of the rates at which chemical reactions	1
	occur and the effect of parameters such as temperature, pressure, reactant	
	concentration/ composition on the reaction rates.	
1-b	Classification of chemical reactors:	
	1. Based on shape of reactor	1
	a) Tank reactor	
	b) Tubular reactor	
	2. Based on mode of operation	1
	a) Batch reactor	
	b) Semi batch reactor	
	c) Continuous reactor	
1-c	Unsafe conditions in a laboratory : (any 4)	¹∕₂ mark
	1. Wet and slippery floor	each
	2. Improper ventilation	
	3. Unavailability of personal protective equipment	
	4. Insufficient information about chemical hazard	
	5. Unsafe acts	
	6. Lack of written procedures regarding safety and emergency	
	7. Improper material handling	
1-d	Hazards symbols:	
	1. Toxic material	

Title: Fu	andamentals of Chemical Engineering Subject code : 22231	Page 3
		1
	2. Corrosive materials	
		1
1-e	Molarity of solution= gram moles of solute/ volume of solution in litre	2
1-f	Dalton's law:	
	It states that the total pressure exerted by a gas mixture is equal to the sum of	1
	partial pressures of its component gases.	
	$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3$	
	Where P is total pressure of gas mixture	1
	P_1 , P_2 , P_3 are the partial pressures.	
1-g	pH of solution : It is defined as the negative logarithm of hydrogen ion	1
	concentration.	
	$pH=-\log[H^+]$	
	Scale: It is a logarithmic scale ranging from 0 to 14 used to measure the	1
	concentration of hydrogen ion in a solution. Water has a pH of 7, acidic	
	solution has a low pH value (0-7) and basic solution has a high pH value(7-14).	
2	Any three	12
2-a	Relation between chemistry and chemical engineering:	4
	1. Chemical Engineering is the technology of Chemistry.	
	2. Chemistry deals with unit process whereas chemical engineering covers unit	

(ISO/IEC - 27001 - 2005 Certified)

(ISO/IEC - 27001 - 2005 Certified)

Subject 7	Fitle: Fu	ndamentals of Chemical Engineering Subject code : 22231	Ра	age 6 of 19
	volume of the bottle should be taken from the supplier			
	2-d Principle of conductivity meter:			
		Two electrodes (platinum plates) are placed in a sample, a potential is applied	2	
		across the electrodes, and the current is measured.		
		Principle of Abbe's refractometer:		
	The refractive index of a sample is determined by measuring the critical angle			
		made when the sample is brought into contact with the medium of a known		
		refractive index (measuring prism).		
	3	Any three	12	
	3-a	Temperature:		
	Temperature is a measure of hotness or coldness of a body.			
		Dry bulb temperature:		
	Temperature recorded by ordinary thermometer is called dry bulb temperature.			
	Wet bulb temperature:			
	It is the temperature indicated by thermometer whose bulb is covered with		1	
		cotton or muslin wire wetted with moisture		
		The readings of Dry bulb and wet bulb temperatures are used to predict		
		weather. A large difference between the readings of dry and wet bulb	1	
		temperatures indicates a dry weather. A small difference indicates a sultry		
		weather or possible rain. One condition for rain is abundance of water vapour in		
		the atmosphere.		
	3-b Weight of NaCl = 10 kg			
	Weight of $H_2O = 50 \text{ kg}$			
	Total weight = 60 kg			
	Weight % of NaCl = (10/ 60) * 100 = 16.67%			
		Weight % of $H_2O = (50/60) * 100 = 83.33\%$	1	

Title: Fu	ndamentals of Chemical Engineering	Subject code :	22231	Ра	age 7 of 19
	Molecular weight of NaCl $= 58.5$				
	k moles of NaCl = 10/58.5 = 0.171				
	Molecular weight of $H_2O = 18$				
	k moles of $H_2O = 50/18 = 2.78$			1	
	Total moles = $0.171 + 2.78 = 2.949$				
	Mol % of NaCl = (moles of NaCl / To	tal moles)*100			
	= (0.171/2.949)*100 = 5.3	79%			
	Mol % of H_2O = (moles of H_2O / Total	l moles)*100			
	= (2.78/ 2.949)*100 = 9	94.26%		1	
3-с	Solubility:				
	Solubility of a solute is the maximum ar	nount of solute that can b	be dissolved in	3	
	a given amount of solvent at a specific te	mperature and pressure.			
	OR				
	It is the amount of solute dissolved in a	given quantity of solven	t to produce a		
	saturated solution at a specific temperatu	re and pressure.			
	It is expressed as parts by weight of s	solute per 100 parts by	weight of the		
	solvent at a given temperature. Another	way to express solubility	in in gm/ litre		
	of solution.				
	Effect of temperature on solubility:			1	
	Solubility increases as temperature incre	eases.			
3-d	Size reduction: It is an operation wherei	in large solid particles are	subdivided		
	to smaller ones.				
	Importance of size reduction:			1 mark	
	1. Easy handling			each for	
	2. Easy transportation			any 4	
	3. Increase in reaction rate				
	4. For having intimate mixing of so	lid			

itle: Fu	undamentals of Chemical Engineering Subject code : 22231	
	5. To separate various ingredients.	
4	Any three	12
4-a	Types of chemical industries on the basis of application:	
	On the basis of application, Chemical industries are classified as	2
	1. Industries manufacturing Basic chemicals	
	2. Industries manufacturing Fine chemicals	
	3. Industries manufacturing Specialty chemicals	
	Basic industrial chemicals include fertilizers, organic and inorganic chemicals,	
	dyes, resins, explosives, synthetic fibre, plastics, rubber etc.	2
	Fine chemicals are produced in limited volumes and at relatively high prices	
	according to exact specifications, mainly by traditional organic synthesis in	
	multipurpose chemical plants. Fine chemicals are used as starting material for	
	specialty chemicals, particularly pharmaceuticals, biopharmaceuticals and	
	agrochemicals.	
	Specialty chemicals are particular chemical products which provide a wide	
	variety of effects on which many other industry sectors rely. These are usually	
	manufactured in batch chemical plants using batch processing techniques. Most	
	of these chemicals are organic chemicals.	
4-b	Importance of safety in chemical industries:	1 mark
	1. To increase the rate of production	each
	2. To reduce the cost of production	
	3. To reduce the damage to equipment and machinery	
	4. To protect the life and limbs of the workers	
4-c	Importance of Emergency exit:	
	An emergency exit is an exit other than regular exit in a workplace which is	2
	used for prompt evacuation of employees from the workplace during	

Subject Tit	le: Fundamentals of Chemical Engineering Subject code : 22231	Page 9 of 19		
	emergencies such as fire, explosion etc. Exit route must be unobstructed by			
	materials, equipment etc., it must be separated from explosives and flammable			
	materials and it must not be locked. Adequate lighting must be provided for exit			
	route and the EXIT sign must be able to be seen from a distance.			
	Importance of assembly point:			
	Assembly point is a predetermined safe area outside the building where all			
	occupants of the building should assemble / gather and remains there till the	2		
	end of the emergency. In the event of a fire or emergency, whenever it is			
	necessary to evacuate the building, people must move promptly to the assembly			
	point of the building. Assembly point should be easily and safely accessible and			
	must have sufficient space to accommodate all occupants. It should have			
	unobstructed pathway to them and should be located away from power lines.			
4	4-d Basis: 500 ml solution.			
	Weight of solute = 20 gm			
	Molecular weight of $NaOH = 40$	1		
	Gram moles of solute $= 20/40 = 0.5$	1		
	Molarity = Gram moles/ Volume of solution in lit			
	0.5/0.5 = 1 M	1		
	Normality = gram equivalent of solute/ volume of solution in lit			
	= 0.5/0.5 = 1N	1		
4	l-e Different unit operations:	¹ /2 mark		
	1. Size reduction	each for		
	2. Size separation or screening	any 4		
	3. Mixing			
	4. Filtration			
	5. Sedimentation			
	6. Extraction			
]		

Subject Title: Fundamentals of Chemical Engineering Subject code : 22231	Page 10 of 19
7. Distillation	
8. Drying	
9. Crystallization	
10. Gas absorption	
Explanation	
Filtration: The separation of solid from a suspension in a liquid with the help	
of a porous medium which retains the solid and allows the liquid to pass	2
through it is termed as filtration. Filtration involves the separation of solids	
from a liquid and is effected by passing the slurry through a porous medium.	
The pressure difference set up across the filter medium causes the fluid to flow	
through the small holes of a filter cloth or screen which blocks the passage of	
the larger solid particles. Filter aids are used as a pre coat to the filter medium	
before the slurry is filtered. This will prevent small particles from plugging the	
filter medium and also give a clearer filtrate.	
OR	
Distillation:-	
- Distillation is an operation in which the components of a liquid mixture are	
separated using thermal energy.	
- In this operation, liquid and vapour are involved. The vapour phase is created	
by supplying heat to the liquid phase.	
-This unit operation is also termed as fractionation and with this technique it is	
possible to separate a liquid mixture into its components in almost pure forms.	
- In this operation mass is transferred from both the phases to one another by	
vaporization from the liquid phase and by condensation from the vapour	
phase.	
OR	
Gas Absorption:	

Title: Fu	indamentals of Chemical Engineering Subject code : 22231	Page 1	. 1 of 1
	-This operation is used to separate the components of gas mixture .		
	-It is carried out for the recovery or the removal of a soluble components of a		
	gas mixture depending upon the situation.		
	-Absorption is an operation in which a gas mixture is contacted with a liquid		
	solvent for the purpose dissolved a definite component of the gas mixture in the		
	liquid.		
	- Gas absorption is usually carried out in packed columns.		
	Example:		
	1) Absorption of ammonia from an air- ammonia mixture by water		
	2) Removal of hydrogen sulfide from naturally occurring hydrocarbon gases		
	OR		
	Drying: Drying is an operation in which the moisture of a substance is removed		
	by means of thermal energy. In this operation, moisture is removed by		
	circulating hot air or gas over the material in order to carry away the water		
	vapour. In this operation, heat and mass transfer occur simultaneously. Heat is		
	transferred from the gas phase to the solid phase and mass is transferred from		
	the solid phase to the gas phase. Usually a solid or nearly solid materials are		
	processed in dryer.		
	Note: Explanation of any one unit operation should be considered.		
5	Any two	12	
5-a	Application of pH measurement in Industry:	¹∕₂ mark	
	pH measurement is essential in :	each for	
	1) Waste water treatment, municipal sewage treatments.	any 6	
	2) Boiler feed water treatment.		
	3) Drinking water purification.		
	4) Production of Ultra pure water.		
	5) Aquariums and swimming pools.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Fundament	tals of Chemical Engineering	Subject code :	22231	Pa	ge 12 of 19
7) 8) 9) 10 11 12	Cooling tower water. Checking freshness of raw incomi Desulphurization process that rem Process of drying in textile indust () Checking chemical reaction in pro) Determining plant nutrients in soi () Digestion and bleaching processe papers. c of pH on electrical Conductivity The conductivity of solution depe ions presents. The conductivity in of ions. These ions contribute diff upon their mobilities through the solutions for an acidic solution, Thus so having higher conductivity values	noves sulfur from oil in oil ries. oduction of drugs. 1. es in the manufacturer of the concentration creases with increase in concentration creases with increase in concentration for the concentration of the concentration of olutions having lower pH	pulp and on of all the concentration cy depending e cation is the the hydrogen	3	
5-b i)Tray	y dryer:			1 mark each	

Subject Title: Fundamentals of Chemical Engineering	Subject code :	22231	Page 13 of 19
ii)Plate column:			
iii)Packed column:			
iv) Jaw crusher:			
v) Stirrer:			

Subject Title:	Fundamentals of Chemical EngineeringSubject code :22231	Page 14 of 19
	vi) Ball mill	
5-c	(i) Sulfonation reactions :	
	It is the reaction with sulfuric acid to introduce sulfonic (SO ₃ H) group into a compound.	1
	$C_6H_6 + H_2SO_4 \rightarrow C_6H_5SO_3H + H_2O$	
	Benzene benzene	1
	sulfonic acid	
	(ii) Hydrogenation:	
	Hydrogenation may be defined as the chemical reaction of an organic with	
	molecular hydrogen in the presences of a catalyst.	
	It is a unit process by which an organic compound reacts with molecular	1
	hydrogen in the presences of catalyst.	
	1) Ethylene can be hydrogenated to ethane under pressure in the presence of	
	Ni catalyst	
	Ni	
	$\begin{array}{rcl} CH_2 = CH_2 &+ H_2 & \rightarrow CH_3 - CH_3 \\ Ethylene & Heat & Ethane \end{array}$	1
	Euryrene Heur Euraile	
	2) Cyclohexane can be produced by hydrogenation of benzene at 150 $^{\circ}$ C using	
	Ni catalyst	
	$ \begin{array}{c} \text{Ni}\\ \text{C}_6\text{H}_6 + 3\text{H} \text{C}_6\text{H}_{12}\\ 150 \ ^{\circ}\text{C} \end{array} $	
	(iii) Esterification : The reaction of an alcohol with a carboxylic acid to	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title	Fundamentals of Chemical Engineering Subject code : 22231	Page 15 of 19
	produce an ester is termed as esterification	1
	Example : Esterification of an acid such as acetic acid by an alcohol such as	
	ethyl alcohol results in the production of ethyl acetate. Sulphuric acid and	
	hydrochloric acids are the catalysts used for esterification.	
	N^+ CH ₃ COOH + C ₂ H ₅ OH	1
	←	
6	Acetic acid Ethanol Ethyl acetate	12
	Any two	12
6-		
	Principles:	
	The refractive index of a sample is determined by measuring the critical angle	1
	made when the sample is brought into contact with the medium (measuring	
	prism) of a known refractive index.	
	Diagram:	

(ISO/IEC - 27001 - 2005 Certified)

	The surface of illuminating prism is matted so the form the prism) at all possible angles , including surface.	-	he sample		
(.1 . 1	-		
	surface.	ng that almost paralle	el to the		
S					
]	The lower face of the measuring prism (also kno	own as the refracting	g prism)is		
ł	nighly polished.				
]	Γwo compensating Amici prisms are provided t	to prevent the disper	sion of light		
8	and thus to get a shadow boundary clear				
I	An eyepiece of telescope is provided with cross	hairs. For controllin	ng		
t	emperature during measurements, water from t	the thermostat is circ	culated		
t	hrough jackets surrounding the prisms.				
7	Working:				
	The sample is put between illuminating and m	easuring prisms in th	he form of		
f	ilm of thickness of about 0.10 to 0.14 mm. Lig	ht from a light sourc	e is directed		
t	owards the prisms. It enters the sample from ill	luminating prism and	d get	2	
r	refracted at critical angle at the bottom surface of	of the measuring pri	sm, and then		
F	passes into a fixed telescope. The field of view	gets divided into bri	ght and dark		
ε	areas. Using a rotating knob, the shadow bound	ary (border line)sepa	arating		
t	he bright and dark areas is placed exactly on th	e cross hairs of an e	yepiece of		
t	he telescope and the refractive index is then rea	ad from the scale pro	ovided.		
]	The accuracy of this instrument is about ± 0.0	0002.			
6-b I	Distillation:-Distillation is an operation in wh	nich the component	s of a liquid	3	
r	nixture are separated using thermal energy. It	depends upon the	difference in		
t	poiling points of the individual components. The	he difference in vap	our pressure		
C	of the components of a liquid mixture at the same	ne temperature is rea	sponsible for		
s	separation by distillation.				
	In this operation, liquid and vapour phases are	e involved. The vap	our phase is		
c	created by supplying heat to the liquid phas	se. The concentrat	ion of more		

itle: Fu	undamentals of Chemical Engineering Subject code : 22231	Р	
	volatile component of the liquid mixture is higher in vapour phase than in the		
	feed solution, while that of the less volatile component is higher in the liquid		
	phase.		
	When a liquid mixture containing more volatile and less volatile components		
	are heated, more volatile component will vaporize first and the vapours are		
	collected and condensed to get it in pure form.		
	Leaching:		
	-Leaching is an operation in which a solid mixture is contacted with a liquid		
	solvent for the removal of one or more constituent of the solid mixture.		
	-The process of removing a solute from the solid by treating it with a liquid	3	
	solvent is called leaching.	-	
	-This operation is also called as solid-liquid extraction.		
	-Leaching involves the transfer of soluble component of a solid phase into a		
	relatively non-volatile liquid solvent. The soluble solid from an insoluble solid		
	matter dissolves in the solvent used.		
	-Leaching may be used either for the production of a concentrated solution of a		
	valuable solid material, or in order to free an insoluble solid from a solute		
	material with it is contaminated.		
	-Examples of leaching		
	1) Leaching of gold from its ores by using sodium cyanide solution.		
	2) Extraction of oil from oilseeds by using hexane as solvent.		
	3)Extraction of sugar from sugar beats using hot water.		
6-с	Electro- dialysis:	6	

(ISO/IEC - 27001 - 2005 Certified)

