Scheme – I

Sample Question Paper

Program Name	: Diploma in Chemical Engineering	
Program Code	: CH	
Semester	: Third	22315
Course Title	: Industrial Stoichiometry	
Marks	: 70	Time: 3 Hrs.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1) Attempt any FIVE of the following.

- a) Define Power and write its SI unit.
- b) State Dalton's law and Amagat's law.
- c) List out different unit operations used in the chemical industry (Any four).
- d) Write the stoichiometric coefficients for the given reaction

 $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2.$

- e) Define calorific value.
- f) Define heat of formation.
- g) Convert a pressure of 800mmHg to the following units: (i) atm (ii) kPa

Q.2) Attempt any THREE of the following.

- a) An evaporator is concentrating 5% solution of NaCl to 25% NaCl by weight. Calculate the quantity of water evaporated for evaporator fed with 5000kg/hr of feed solution.
- b) Describe Distillation operation with the help of block diagram and overall material balance equation.
- c) Carbon monoxide is reacted with hydrogen to produce methanol Calculate
- (i) the stoichiometric ratio of H₂ to CO

(ii) kg mole CH₃OH produced per kg mole CO reacted

10 Marks

d) Calculate heat capacity at constant pressure at room temperature of oxygen if the oxygen is assumed to be an ideal gas.

Q.3) Attempt any THREE of the following.

- a) Calculate the actual urea content in the urea sample if available nitrogen in given sample is found to be 45%.
- b) A dryer handle 1000kg/hr of wet solids containing 50% solid to be dried to 20% moisture calculate percentage of original moisture removed.
- c) In production of sulfur trioxide 100kmol of SO₂ and 200 kmol of O₂ are fed to reactor. The product stream is found to contain 80kmol SO₃. Calculate % conversion of SO₂.
- d) Calculate the heat needed to raise the temperature of 1kmol of ammonia from 311K o 422K using following mean molal heat capacity data,
 - Cp_{m}^{0} of NH₃ between 311and 298K = 35.86 kJ/mol K
 - Cp_{m}^{0} of NH₃ between 422and 298K = 3537.70kJ/mol K

Q.4) Attempt any THREE of the following.

- a) A force equal to 19.65kgf is applied on a piston with a diameter of 5cm. Calculate the pressure exerted on the piston in kPa.
- b) Air contains 21% oxygen and 79% Nitrogen (by vol) calculate average molecular weight of air.
- c) Describe Extraction operation with the help of block diagram and overall material balance equation.
- d) In electrolytic manufacturing of chlorine gas from a sodium chloride solution suppose that 50kg of NaCl reacts with 10kg of H_2O (i) Identify limiting and excess reactant (ii) List out components of product stream if the reaction is 60% complete. $2NaCl + 2H_2O \rightarrow 2NaOH + H_2 + Cl_2$
- e) State classification of fuels with four examples of each class used in the Chemical industry.

Q.5) Attempt any TWO of the following.

a) In the manufacturing of Nitric Acid Initially ammonia and air are mixed at 7atmg and 650^0c the composition of the mixture (on vol basis) is as follows N_2 70.5%, O₂ 18.8%, H₂O 1.2%, NH₃ 9.5%. Calculate the density of the gas mixture

12 Marks

2

12 Marks

using ideal gas law.

- b) In a chemical fertilizer industry a mixed fertilizer having the NPK composition 10:26:26 as %N₂, %P₂O₅ and %K₂O by weight respectively is to be formulated by mixing ammonia, phosphoric acid and potassium chloride. If anhydrous ammonia, anhydrous phosphoric acid and 100% pure potassium chloride is used for mixing. Calculate the amount of each of them required for formulating 100Kg mixed fertilizer assume that the filler will make up the balance.
- c) The burning of limestone, CaCO₃ → CaO+CO₂, goes only 70% to completion in a certain kiln. (i) Determine the composition (wt %) of the solid withdrawn from the kiln. (ii) Calculate kilogram of CO₂ produced per kilogram of limestone fed assuming that the limestone is pure.

Q.6) Attempt any TWO of the following.

12Marks

- a) In a oxidation process during production of chlorine gas by oxidation of hydrochloric acid gas. Air is used 30% in excess of that theoretically required, based on 4kmol HCl, if oxidation is 80% complete find the composition of product stream on mole basis.
- b) A coke containing 90% carbon and 10% noncombustible ash (by weight), is burned in air. If 50% excess air is supplied, calculate kmol of air actually supplied.
- c) Using following data , Calculate the change in enthalpy of reactant and product if both are at 298 K and if 5 moles of ethylene oxide is produced as per the following reaction

 $C_{2}H_{4}(g) + \frac{1}{2}O_{2}(g) \rightarrow C_{2}H_{4}O$

Component	ΔH_{f} , at 298K kJ/mol
C ₂ H ₄	52.50
C ₂ H ₄ O	-52.63

Scheme – I

Sample test Paper - I

Program Name	: Diploma in Chemical Engineering
Program Code	: CH
Semester	: Third
Course Title	: Industrial Stoichiometry
Marks	: 20

Time: 1 Hour.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a) List out any four fundamental quantities.
- b) Make conversion of 1N/m² Pressure to Dyne/cm².
- c) Write mathematical equation of law that is obeyed by real gas.
- d) State Raoult's law and give its mathematical expression.
- e) Define steady state operation.
- f) State law of conservation of mass.

Q.2 Attempt any THREE.

- a) In a double effect evaporator plant, the second effect is maintained under vacuum of 475mmHg. Find the absolute pressure in mmHg and kPa.
- b) Calculate the weight of chlorine in a vessel having volume of $5m^3$, the temperature and pressure being 400K and 100kPa.
- c) Give the value of Universal gas constant in SI system and calculate value of volume occupied by 1mol of gas at NTP.
- d) Illustrate the importance of recycling operation in chemical industry. (Any four Points)
- e) In a distillation unit 1000 kg/hr of mixture of benzene and toluene containing 60% benzene by wt. is distilled to give a distillate containing 90% benzene and 90% toluene in residue by weight. Calculate kg/hr of distillate.
- f) An evaporator is concentrating 5% solution of NaCl to 25% NaCl by weight. Calculate the quantity of water evaporated for evaporator fed with 5000kg/hr of feed solution.

08 Marks

Scheme – I

Sample test Paper - I

Program Name	: Diploma in Chemical Engineering	
Program Code	: CH	
Semester	: Third	2
Course Title	: Industrial Stoichiometry	
Marks	: 20	Т

22315

Time: 1 Hour.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a) Define the term 'Limiting Reactant'.
- b) In the following reaction write stoichiometric ratio of H₂ and O₂ H₂ + $\frac{1}{2}$ O₂ \rightarrow H₂O
- c) Define GCV.
- d) Choose the solid and liquid fuel from the following: saw dust, Producer gas, kerosene, Gasoline and coke.
- e) State Law of Conservation of Energy.
- f) Define Heat of Reaction.

Q.2 Attempt any THREE.

a) If 1kg of benzene is oxidized with oxygen, how many kilograms of oxygen b) Calculate the NCV at 25° C of a sample of fuel oil having C/H ratio 9.33(by wt) and containing sulfur to the extent of 1.37% by wt using following data.

i) Gross calorific value of fuel oil at $25^{\circ}C = 9980$ kcal/kg

ii) Latent heat of water vapour at 25°C=538.2 kcal/kg Latent heat of water vapour at 25° C=538.2 kcal/kg are needed to convert all the benzene to CO₂ and H₂O.

- c) Prove that, for an ideal gas, $C_p C_v = R$.
- d) Write stepwise procedure to solve material balance with chemical reaction carried out in chemical industry.

12Marks

- e) Water at one atm pressure and 90° C is cooled to 60° C at constant pressure, calculate the enthalpy change.
- f) The carbon monoxide is reacted with hydrogen to produce methanol calculate for the reaction a) the stoichiometric ratio of H_2 to CO b) kg mole CH₃OH produced per kgmole CO reacted