

Subject Code: 17214

Model Answer

Page 1 of 27

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A	Attempt any TEN of the following :	20 Marks
a)	Define potential difference and give its unit.	
Ans:	Potential Difference:	(1 Mark)
	Potential difference between two points is defined as the work done to transfer unit	positive
	charge from one point to other. OR	
	The difference in electric potentials of two charged bodies is called potential difference	ence.
	Unit of Potential Difference: Volts	(1 Mark)
b)	Define i) Power ii) Energy.	
Ans:	i) Power:	(1 Mark)
	The rate of doing work done is known as power. Its unit is watt	
	ii) Energy:	(1 Mark)
	The total work done in the given time is known as energy. Its unit is KWH	
c)	Draw the waveform of direct current and alternating current.	
Ans:	i) Waveform of Direct current (DC) :	(1 Mark)
	Direct Current	
	or equivalent figure	

SUMMER-2018 Examinations Subject Code: 17214 **Model Answer** Page 2 of 27 ii) Waveform of Alternating current (AC): (1 Mark) Time Alternating Current or **equivalent figure** d) Define unilateral and bilateral circuit. i) Unilateral circuit: (1 Mark) If the characteristic, response or behavior of circuit dependents on the direction of flow of current through its elements, then the circuit is called as a unilateral circuit. e.g. networks containing elements like diodes, transistors, thyristors etc. Ans: ii) Bilateral Circuit: (1 Mark) If the characteristic of circuits (response or behavior) is independent of the direction of current through its elements in it, then the circuit is called as a bilateral circuit e. g. circuits containing elements like resistances, inductances and capacitances. Compare series and parallel circuit in terms of voltage and current. **e**) Comparison for series and parallel circuits: (Any Two point expected: 1 Mark each) Ans: Series circuits Parallel circuits S.No. Number of path for current to flow in a closed 1 Only ONE path for current to flow in a closed circuit circuit Current is DIFFERENT through each 2 Current remains the SAME in branch of the circuit all parts of the circuit Voltage is DIFFERENT across 3 Voltage remains the same across each component each component of the circuit State KVL as applied to DC circuit. f) Kirchhoff's Voltage Law (KVL): (2 Mark) Ans: It states that, in any closed path in an electric circuit, the algebraic sum of the emfs and

	SUMMER- 2018 Examinations	
S	ubject Code: 17214 <u>Model Answer</u>	Page 3 of 27
	products of the currents and resistances is zero.	
	i.e $\Sigma E - \Sigma IR = 0$ or $\Sigma E = \Sigma IR$	
	OR	
	It states that, in any closed path in an electrical circuit, the	total voltage rise is equal to
	the total voltage drop.	
	i.e Voltage rise = Voltage drop	
g)	What is capacitance? State its unit.	
	Capacitance: (Meaning:	1 Mark & Unit : 1 Mark)
	The capacity of a capacitor to store electric charge is known as its ca	apacitance.
Ans:	The capacitance of a capacitor is defined as the ratio of the ch	harge Q stored on its either
	plates to the potential difference V between the plates.	
	The capacitance is expressed as, $C = Q/V$ The unit of capacit	ance is farad.
h)	State the values for permeability of free space and relative permea	bility of air.
Ans:	i) Values for permeability of free space: $\mu o = 4\pi \times 10^{-7}$ H/m.	(1 Mark)
	ii) Values for relative permeability of air : $\mu r = 1$.	(1 Mark)
i)	Write one application of each: i) Permanent Magnet ii) Electromag	gnet
Ans:	ii) Applications of Permanent Magnet: (Any one application	tion expected:1 Mark)
	1) Field of DC motors	
	2) Tacho-generators	
	3) In stepper motors.	
	4) Field of two wheeler and car dynamo	
	5) In magnetic therapy	
	6) In magnetic compass.	
	7) Speedometers	
	8) Telephones	
	9) Microphones	
	10) Earphones	
	11) PMMC instrument.	
	ii) Applications of Electromagnet: (Any one appli	ication expected:1 Mark)
	Cranes, Motors, Generators, Transformers, Electromagnetic	Relays, Circuit breakers,
	Traction, Measuring instruments, Electrical Bell etc.	

Subject Code: 17214

Model Answer

Page 4 of 27

j)	State Fler	ning's Right Har	nd Rule.		
Ans:	1) Flemin	g's Right Hand	Rule:		(2 Mark)
	A	Arrange three fin	gers of right har	nd mutua	ally perpendicular to each other, if the first
	figure	indicates the dire	ection of flux, thu	ımb indic	cates the direction of motion of the conductor,
	and th	en the middle fin	ger will point out	t the dired	ction of induced current.
k)	State the	meaning of 'A' a	nd 'B' type insu	lating m	aterials.
Ans:	Ta	ble not compulso	ry but content ne	ed to be	covered (Each Meaning : 1 Mark)
	S.No.	Class	Temperature ⁰	°C	Materials
	1	Α	105 °C		Impregnated paper, silk, cotton
	2	В	130 °C		Inorganic materials like mica, glass, asbestos impregnated with varnish
D	Write the	equation of ac v	oltage.		
Ans:	Equation	of ac voltage:			(2 Mark)
		$v = V_m \sin(\omega t)$			
	Where, v	=instantaneous va	alue of voltage in	volt	
	V_n	n= Maximum valu	ue of voltage in v	volt	
m)	List any f	our application o	of lead acid batte	ery.	
Ans:	Applicati	ions of lead acid	battery: (A	ny Four	point expected: 1/2 each : Total : 2 Mark)
	i) A	s standby units in	the distribution	network	
	ii) I	n the uninterrupte	d power supplies	5	
	iii)	In the telephone s	ystem		
	iv) l	In the railway sign	naling		
	v) Ii	n the battery oper	ated vehicles		
	vi) l	In the automobile	s for starting and	lighting	
n)	State Ohr	n's law for electr	ic circuit.		
Ans:	Ohms La	w:			(State-1 Mark & Equation-1 Mark)
	diffe resis	The current the current the currence of pote stance provided the the stance provided t	flowing through ntial across th te temperature ren	a solid ne cond mains co	d conductor is directly proportional to the luctor. & inversely proportional to its nstant.

		SUMMER-	2018 Examinations	
S	ubject Code: 17214	<u>Mo</u>	del Answer	Page 5 of 27
	Equation:-	i.e I αV $\therefore \frac{V}{I}$	$cons \tan t \therefore I = \frac{V}{R}$	
	or : V = I.R.	$r R = \frac{V}{I}$		
	Where R is c	onstant called as re	esistance, V=voltag	e and I = Current
Q.2	Attempt any FOUR of	the following :		16 Marks
a)	A copper coil has a resis	tance of 12.7 ohn	ns at 18°C and 14.	B ohms at '50°C. Find :
Ans:	The resistance at t^0C is	given by :	at U C II) Resistant	
	$R_1 = 12.7 \text{ ohm}$	$t_1 = 18^{0}C$ R	$t_2 = 14.3 \text{ ohm } t_1 =$	50 ⁰ C
	i) Temperature co-effi	cient of resistanc	e at 0°C	
	$R_2 = R_1$	$1 + \alpha_1 (t_2 - t_1)]$		(1 Marks)
	14.3 = 12	$.7[1+\alpha_1(50-18)]$		
	$\frac{14.3}{12.7} = [$	$1 + \alpha_1(32)$		
	1.125-1=	$= \left[\alpha_1(32) \right]$		
	0.125 = [$\alpha_{1}(32)$]		
	$\alpha_{18} = 3.9$	$3 \times 10^{-3} / C$		
	$t_1 at = 18^0 C$:			
	$\alpha_t = \frac{\alpha_0}{1 + \alpha_0 t}$			
	$\alpha_{18} = \frac{\alpha_0}{1 + \alpha}$	<u>_</u> 18		
	3.93×10 ⁻³	$=\frac{\alpha_0}{1+\alpha_0 18}$		
	3.93×10^{-3}	$+ \alpha_0(0.708) = \alpha_0$		
	$3.93 \times 10^{-3} =$	$= \alpha_0 - (0.708) \alpha_0$		
	3.93×10 ⁻	$a^3 = \alpha_0 (1 - 0.708)$		
	3.93×10 ⁻	$^{3} = \alpha_{0}(0.929)$		

	S	SUMMER- 2018 Examinations	
S	ubject Code: 17214	Model Answer	Page 6 of 27
	$\alpha_0 = \frac{3.93 \times 10^{-3}}{0929}$ $R_{TC} \ at \ 0^0 C$	$\alpha_0 = 4.23 \times 10^{-3} / C$	(1 Mayles)
	ii) Resistance of coil at 0°C:		
	$R_t = R_0 (1 + \alpha_0 t)$		(1 Morks)
	$12.7 = R (1+4.2)^{-1}$	$3 \times 10^{-3}(18 - 0)$	(1 Marks)
	$12.7 - R_0 (1 + 4.2)$	3×10 (10 0)	
	$12.7 - K_0 (1.07)$		
	$R_0 = \frac{12.7}{1.07}$		
	$R_{\rm o} = 11.80$ G	2	
	0		(1 Marks)
b)	List any four types of resistance	ce. Give one application of each	h.
Alls:	1. Carbon composition r	resistance;	pes & expected : 1 Mark each)
	Application: Potentia	l divider, welding control circui	ts, power supplies, hv. and high
	impulse circuits as sv	vitching spark circuits.	
	2. Wire wound resistanc	e:	
	Application : Power	amplifiers	
	3. Film type resistance:		
	Application: medical	instruments.	
	4. Carbon film resistanc	e :	
	Application : Amplifie	er	
	5. Metal film resistance,		
	Application: Oscillator,	, telecommunication circuits, tes	sting circuits, measurement
	circuits, audio amplifie	er circuits.	
c)	Define 'Ideal voltage source' an	nd 'Practical voltage source'. I	Draw the symbol for each.
Ans:	i) Ideal voltage source:		(1 Mark)
	A voltage source wh	nose terminal voltage always re	emains constant for all values of
	output current, is known as ar	n ideal voltage source. It has zer	o internal resistance.

		SUMMER- 2018 Examinations	
S	ubject Code: 17214	Model Answer	Page 8 of 27
e)	Convert the network of	f fig. 1 into equivalent star network. 4Ω 4Ω 4Ω 4Ω 4Ω 4Ω 4Ω 4Ω	
		Fig. 1	
Ans:	$R_1 = -$ $R_1 = -$	$\frac{R_{a}=4.0}{R_{a}=4.0}$ $R_{a}=4.0$ $R_{a}=4.0$ $R_{a}=6.0$ $R_{b}=10.0$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$ $R_{b}=10.0$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$ $R_{c}\times R_{a}$	(1 Mark)
	$R_1 = 1$.2 Ω	(1 Mark)
	$R_2 = -\frac{1}{2}$	$\frac{\frac{R_c \times R_b}{(R_c + R_b + R_a)}}{\frac{6 \times 10}{(6 + 10 + 4)}}$	
	$R_2 = 3$ $R_3 =$ $R_3 = -\frac{1}{(4)}$	$\frac{R_b \times R_a}{(R_c + R_b + R_a)}$ $\frac{10 \times 4}{6 + 10 + 4)}$	(1 Mark)
	$R_{3} = 2$	2 Ω	(1 Mark)

SUMMER- 2018 Examinations	
<u>Model Answer</u>	Page 10 of 27
VL for loop ABEFA :	
$-4I_1-5(I_1-I_2)+10=0$	(1/2 Mark)
$-4I_1-5I_1+5I_2)+10=0$	
$-4I_1-5I_1+5I_2) = -10$ Eq.(1)	
VL for loop BCDEB :	
-2 I ₂ - 8 - 5 (I ₂ - I ₁) = 0	
-2 I ₂ - 8 - 5 I ₂ + 5 I ₁) = 0	
$5 I_1 - 7 I_2 = 8Eq.(2)$	(1/2 Mark)
ing eq. (1) by 7 and multiplying eq. (2) by 5, we get	
-63 I ₁ +35 I ₂ = -70Eq.(3)	
25 I ₁ - 35 I ₂ = 40Eq.(4)	
eq. (3) & eq. (4),	
-63 I ₁ +35 I ₂ = -70Eq.(3)	
$+25 I_1 - 35 I_2 = 40$ Eq.(4)	
$-38 I_1 = -30$	(1/2 Mark)
$I_1 = \frac{-30}{-38}$	
I ₁ = 0.7894 Amp	(1 Mark)
ting I ₁ in eq. (2),	
5 (0.7894) -7 I ₂ = 8	(1/2 Mark)
-7 I ₂ = 8 - 3.94	
-7 I ₂ = 4.05	
$I_2 = \frac{4.05}{-7}$	
$I_2 = -0.579 \ Amp$	(1 Mark)
nt through 5 Ω resistance is I = (I ₁ - I ₂) = 0.7894 – (-0	0.579)
I=1.36 Amp	
OR	
	SUMMER- 2018 Examinations <u>Model Answer</u> VL for loop ABEFA : $-4I_1 -5(I_1 - I_2) +10 = 0$ $-4I_1 -5I_1 + 5I_2) +10 = 0$ $-4I_1 -5I_1 + 5I_2) = -10$ Eq.(1) VL for loop BCDEB : $-2 I_2 - 8 - 5 (I_2 - I_1) = 0$ $5 I_1 - 7 I_2 = 8$ Eq.(2)Eq.(2)Eq.(3) $25 I_1 - 35 I_2 = 40$ Eq.(3) $25 I_1 - 35 I_2 = 40$ Eq.(3) $425 I_1 - 35 I_2 = 40$ Eq.(3) $+\frac{25 I_1 - 35 I_2 = 40}{-38}$ Eq.(4) $-38 I_1 = -30$ $I_1 = \frac{-30}{-38}$ $I_1 = 0.7894$ AmpEq.(4) $-7 I_2 = 8 - 3.94$ $-7 I_2 = 4.05$ $I_2 = \frac{4.05}{-7}$ $I_2 = -0.579$ Amp

	:	SUMMER– 2018 Examinations	
S	ubject Code: 17214	Model Answer	Page 13 of 27
	ii) Total Charge φ : Total cap	pacitance (C) x Voltage (v)	
	$\varphi = (C) \times (C)$	v)	
	$\varphi_{total} = 8 \text{ x} 10$	$0^{-6} \times 34$	
	Total Charge $\varphi_{total} = 2.72 \text{ x}$	x 10 ⁻⁴ coulomb	(1/2 Marks)
	iii) Charge on each capacitor i	if applied voltage is 34 volts :	
	Total Charge for 12 uF &	$24 \text{ uF will be same} = 2.72 \text{ x } 10^{-4} \text{ C}$	
		2.72×10^{-4}	
	$V_1 = \frac{\varphi}{12 \cdots E}$	$r = \frac{2.72 \times 10}{12 \times 10^{-6}}$	
	$12\mu F$	12×10	
	$V_1 = 22.60$	6 volt	(1/2 Marks)
	$V_2 = \frac{\varphi}{24\mu F}$	$\frac{1}{7} = \frac{2.72 \times 10^{-4}}{24 \times 10^{-6}}$	
	$V_2 = 11.32$	3 volt	(1/2 Marks)
	Charge on each capacitor:		
	$\varphi_{i} = C_{i} V_{i} = 4 \times 1$	$0^{-6} \times 22.66$	
	$\varphi_1 = 0.064 \times 10^{-5}$	C	(1/2 Morks)
	$\psi_1 - 9.004 \times 10$		(1/2 Mai KS)
	$\varphi_2 = C_2 V_1 = 8 \times 1$	$10^{-6} \times 22.66$	
	$\omega_{\rm r} = 1.81 \times 10^{-4} {\rm C}$		(1/2 Marks)
	φ_2 normal c		(_//)
	$\varphi_3 = C_3 V_2 = 24 z$	×10 ⁻⁶ ×11.33	
	$\varphi_3 = 2.71 \times 10^{-4}$ C	C	(1/2 Marks)
	Calculate equivalent resistance	e R _{xy} in following in fig. 3.	
d)		Xo WX WX	
		$V_{S\Omega}$ Fig. 3	

Subject Code: 17214

SUMMER- 2018 Examinations Model Answer

Page 16 of 27

	Explanation:
	> In an electrolytic capacitor, two sheets of aluminum foil, separated by a fine gauges soaked
	in an electrolyte rolled up and encased in an aluminum or ceramic or plastic tube.
	> The aluminum oxide is dielectric. The electrolytic capacitors can be used only for DC and
	should be connected with correct polarity.
	> The electrolytic capacitors have the advantages of small size and low cost.
	> The range of capacitor is from around 1 μ F to 200 μ F and working voltage up to 400 volt
	DC.
	> Their main field of applications is in electronic circuit and filters circuits.
Q.4	Attempt any FOUR of the following : 16 Marks
<u>a)</u>	Explain B-H curve of magnetic material.
Ans:	B-H curve of magnetic material: (Diagram; 2 Marks & Explanation: 2 Marks)
	The B-H curve is the graphical representation of relation between flux density (B) and
	applied field strength (H), with H plotted on the x-axis and B plotted on the y-axis. Typical
	B-H curve is as shown in figure below:
	Saturation Knee H (AT/m)
	The B-H curve can be described by dividing it into 3 regions.
	Region OA: For zero current, $H = 0$ and B is also zero. The flux density B then increases
	gradually as the value of H is increased. However B changes slowly in this region.
	Region AB: In this region, for small change in H, there is large change in B. The B-H
	curve is almost linear in this region.
	Region beyond B: After point B, the change in B is small even for a large change in H.
	Finally, the B-H curve will tend to be parallel to X axis. This region is called as saturation
	region.

SUMMER- 2018 Examinations

Subject Code: 17214

Model Answer

Page 17 of 27

b)	Compare	between electric and magnetic circuit.	
Ans:	Compare	Magnetic and Electric circuit:	
		(Any Four Po	int expected : 1 Mark each, total 4 Marks)
	S.No	Electric circuit	Magnetic circuit
	1	Path traced by the current is known	The magnetic circuit in which magnetic flux
	2	EME is the driving force in the	NMT is the driving former in the mean of it
		electric circuit. The unit is Volts.	circuit. The unit is ampere turns.
	3	There is a current I in the electric circuit which is measured in amperes.	There is flux φ in the magnetic circuit which is measured in the weber.
	4	The flow of electrons decides the current in conductor.	The number of magnetic lines of force decides the flux.
	5	Resistance (R) oppose the flow of the current.	Reluctance (S) is opposed by magnetic path to the flux.
	6	$R = \rho. l/a.$ Directly proportional to l.	$S = l/(\mu_0\mu_ra).$ Directly proportional to l. Inversely
		Inversely proportional to a.	proportional to $\mu = \mu_0 \mu_r$.
	7	The current $I = EMF/Resistance$	The Flux = MMF/ Reluctance
	8	The current density	The flux density
	9	Kirchhoff current law and voltage law is applicable to the electric circuit.	Kirchhoff mmf law and flux law is applicable to the magnetic flux.
c)	An iron i Calculate	ring with mean length of 60 cm is the value of flux density if a current of	of 2A flows through a wire. Assume $\mu_r = 500$
Ang	for iron.		
Alls.	L = 60	cm = 60×10^{-2} m N = 250 I = $2A$ &	$\mu_r = 500$
	Value of f	lux density:	
		$B=\mu_0\;\mu_r\;H$	(1 Mark)
		$B = \mu_0 \ \mu_r \ \frac{N \ I}{l}$	
		$B = 4\pi \times 10 - 7 \times 500 \times \frac{2}{60}$	$\frac{50 \times 2}{0 \times 10^{-2}}$
	Flu	x density $B = 0.523$ tesla o	$r wb / m^2$ (3 Mark)

	SUMMER- 2018 Examinations
S	ubject Code: 17214Model AnswerPage 18 of 27
d)	Derive the expression for equivalent resistance when there resistances are connected in series
Ans:	Equivalent resistance for series circuit containing three resistances: (4 Marks)
	Consider three resistances R1, R2 and R3 ohms connected in series across a battery of V
	volts as shown in the figure. There is only one path for current I i.e. current is same
	throughout the circuit. By ohms law, the voltages across the various
	$I \downarrow V_{1} \longrightarrow V_{2} \longrightarrow V_{3} \longrightarrow V_{3}$
	Resistances are:
	$V_1 = IR_1; V_2 = IR_2; V_3 = IR_3$ Now $V = V_1 + V_2 + V_3$ $= IR_1 + IR_2 + IR_3$
	= I(R ₁ +R ₂ +R ₃) or $\frac{v}{I}$ = R ₁ + R ₂ + R ₃
	But $\frac{V}{I}$ is the total resistance R _s between points A and B. R _s is called the total or equivalent
	resistance of the three series resistances. $\therefore \mathbf{R}_s = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$ When a 'n' no. of resistances are connected in series, the total resistance is equal to the
	sum of 'n' individual resistances.
e)	State and explain Lenz's law.
Ans:	Lenz's law: (2 Marks)
	The direction of induced emf due to the process of electromagnetic induction is
	such that, it always sets up a current to oppose the basic cause responsible for inducing the
	emf.
	The mathematical representation is, $e = -N (d\Phi/dt)$
	Explanation: (2 Marks)
	If a bar magnet with its N pole facing the coil is brought close to the coil, due to
	the relative motion between the coil and the magnet, there is a change in flux linkage with

~ •				
Sub	ject Code	: 17214	Model Answer	Page 19 of 2
	the c	coil. An emf is induced	in the coil and current I starts	flowing. This current produces i
	own	magnetic field The dir	rection of this current is such t	hat it produces an N Pole on the
	side	of the coil it faces.		-
		As N-pole produ	uced by the coil is close to the	N pole of magnet there is a for
	ofro	pulsion between the tw	we and this will oppose the ma	anat coming closer to the coil
	Inus	s the induced emi prod	uces current in such way that	it opposes the cause behind its ov
	prod	uction.		
f) G	ive class	sification of insulatin	ng materials on the basis o	f state of material and give
í aj ns: C	pplicatio lassifica	n of each. tion of insulating mat	erials and annlication of eac	h. (4 Marks
115. C	18551110	tion of insulating mat	citals and application of cat	
	C No			A 12 42
	5.INO	Unassification of Insulating	(Anyone expected)	(Anyone expected)
		material	(myone expected)	(Infjohe expected)
	1	Solid insulating	Wood, rubber, plastic,	Terminal boards, Switch
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain,	Terminal boards, Switch board, casing capping,
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers,
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulatior paper for transformers, capacitors and cables, Sleeves
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards,
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets
	1	Solid insulating materials Liquid insulating	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers,
	2	Solid insulating materials Liquid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser oil, (both are mineral oils),	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers, DC capacitors, cables and
	1	Solid insulating materials Liquid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser oil, (both are mineral oils), synthetic insulating oil etc.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers, DC capacitors, cables and Transformers
	1	Solid insulating materials Liquid insulating materials Gaseous insulating	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser oil, (both are mineral oils), synthetic insulating oil etc. Hydrogen, SF6, Nitrogen,	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers, DC capacitors, cables and Transformers Switchgears, gas pressures
	1 2 3	Solid insulating materials Liquid insulating materials Gaseous insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser oil, (both are mineral oils), synthetic insulating oil etc. Hydrogen, SF6, Nitrogen, Air.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers, DC capacitors, cables and Transformers Switchgears, gas pressures cables, circuit breakers,
	1	Solid insulating materials	Wood, rubber, plastic, PVC, glass, porcelain, mica, Polypropylene film etc. Transformer oil, condenser oil, (both are mineral oils), synthetic insulating oil etc. Hydrogen, SF6, Nitrogen, Air.	Terminal boards, Switch board, casing capping, Spacers, Slot wages, Insulation paper for transformers, capacitors and cables, Sleeves in heating devices, Flexible cables & wires, Panel boards, Switchgears, Electrical heating & cooling equipments, lamp holders, switches and plug sockets Switchgears, Circuit breakers, DC capacitors, cables and Transformers Switchgears, gas pressures cables, circuit breakers, generator cooling systems and

SUMMER- 2018 Examinations

S	ubject Cod	le: 17214	Model Answer	Page 20 of 27
0.5	Attempt	any FOUR of the follow	ving :	16 Marks
a)	Prove the	at $L = N^2/S$. Where N =	Number of turns S = Reluctar	ice.
Ans:	Prove the	at $L = N^2/S$:		(4 Marks)
		$N\phi$	(* NT	1
	$L = \frac{I}{I}$ equation No.1			
	Ohms Law of magnetic circuit:			
		$\phi = \frac{MMF}{\operatorname{Re} luc \tan ce}$		
		$\phi = \frac{MMF}{S}$		
		$\therefore MMF = N \times I$		
		$\phi = \frac{N \times I}{S} - \dots$	equation	No.2
	Subsisting equation No. 2 in equation No.1 :			
	$L = \frac{N \times N \times I}{I \times S}$			
		$L = \frac{N^2}{S}$ Henry	Hence proved	
			OR	
	L	$=$ (N x Φ) / I		
	В	ut, $\Phi = (m.m.f.) / Reluct$	ance	
	$\therefore \Phi = (N \times I) / S$			
	$\therefore \mathbf{L} = (\mathbf{N} / \mathbf{I}) [(\mathbf{N} \times \mathbf{I}) / \mathbf{S}]$			
	\therefore L = N ² / S Henry Hence proved			
b)	Compare	e Dry cell and liquid cel	1.	
Ans:	Compari	ison between Dry cell an	nd Liquid Cell:	(Each Point: 1 Mark)
	S.No	Particulars	Drv cell	Liquid cell
	1	Principal of operation	Irreversible chemical action	Reversible chemical action
	2	Cost	Lower	Higher
	3	Life	Lower	Higher
	4	Maintenance	Very low maintenance	Maintenance required
				regular intervals

Subject Code: 17214 **Model Answer** Page 22 of 27 > This is the common method of charging used in battery shops and in automotive equipment. > In this method time of charging is almost reduced to half. Define : i) Amplitude ii) Frequency iii) Time period iv) Angular velocity related to a.c. **d**) Ans: i) Amplitude: (1 Mark) The maximum value of attained by alternating quantity is called amplitude -----(1 Mark) (ii) Frequency : The total number of cycles per second. -----(1 Mark) iii) Time period: The time (in sec) required by an alternating quantity to complete its one cycle is known as time period. iv) Angular velocity: ------(1 Mark) The frequency of an alternating quantity expressed in electrical radians per second, is known as Angular velocity **OR** In AC cycle, rate of change of angle ω t with respect to time, is known as angular velocity State the application of following materials : i) CRGO Silicon Steel ii) HRGO Silicon e) Steel iii) Amorphous metal iv) Bronze (Any one application expected :1 Mark) Ans: **Applications of CRGO Silicon Steel:** 1) Manufacturing distribution and power transformer cores. 2) Manufacturing cores of audio transformers, ballast transformers, specialty transformers. 3) Manufacturing cores of large transformers, generators and motors. 4) Manufacturing stator and rotor of waterwheel generators. 5) Manufacturing stator and rotor of turbo generators ii) Applications of HRGO Silicon: (Any one application expected :1 Mark) 1) Manufacturing cores of small rating transformers 2) Manufacturing cores of small rating induction motors 3) Manufacturing water-wheel generators 4) Manufacturing turbo generators

	SUMMER- 2018 Examinations				
5	Subject Code: 17214	<u>Model</u>	Answer Page 23 of 27	/	
	iii) Applications of Amor	phous metal:	(Any one application expected :1 Mark)		
	1) Making nanoco	mposites for field ele	ctron emission devices.		
	2) Manufacturing	cores of high efficien	cy distribution transformers		
	3) Manufacturing	cores of special transf	formers		
	4) Manufacturing	magnetic sensors			
	5) Magnetomotive	sensors			
	iv) Applications of Bronz	ze:	(Any one application expected :1 Mark)		
	1) Making brush h	olders			
	2) Making knife sv	witch blades			
	3) Making current	carrying springs, bus	shings.		
	4) For extremely lo	onger spans of overhe	ead transmission lines, phosphor bronze conducto	ors	
	are used.				
	5) Cadmium bronz	e is used for making	commutator segments and contact wires.		
f)	What is coefficient of cou	ıpling? Explain in b	rief.		
Ans:	Coefficient of coupling (l	x):	(Meaning: 2 Mark & Explanation: 2 Marks)	
	\succ It is defined as the	ratio of actual mutua	l inductance present between two coils to the		
	maximum possible	value.			
	$\succ \text{ If } L_1 \text{ and } L_2 \text{ are coeff}$	efficients of self induc	ctances of two coils having mutual inductance 'M	1'	
	between them then	the coefficient of co	upling between these coils is given by: $k = M / $	-	
	(L1L2)				
			OR		
	\succ The fraction of ma		by the current in one coil that links with the othe	r	
		gnetic flux produced	by the current in one con that miks with the othe	.	
	coil is called coeff	icient of coupling be	tween the two coils.	1	
	coil is called coeff i	ficient of coupling be $x = \frac{\phi_{12}}{\phi_1}$	tween the two coils.	4	
	coil is called coeff i k where, ¢1 is	ficient of coupling be $x = \frac{\phi_{12}}{\phi_1}$ the total flux produce	tween the two coils.	1	
	coil is called coeff k where, φ1 is φ12 is	gnetic flux produced icient of coupling be $x = \phi_{12}/\phi_1$ the total flux produce the flux (out of ϕ_1) 1	tween the two coils. ed by coil 1, inking with coil 2	1	
	coil is called coeff i k where, φ1 is φ12 is	gnetic flux produced icient of coupling be $x = \phi_{12}/\phi_1$ the total flux produce the flux (out of ϕ_1) 1	tween the two coils. ed by coil 1, inking with coil 2 OR	1	

S	ubject Code: 17214	SUMMER– 2018 Examinations <u>Model Answer</u>	Page 24 of 27	
	the ratio of actual mut	ual inductance (M) present between the coils C_1 and C_2	C_2 to the maximum	
	possible value of M. C	DR it is the fraction of the total flux produced by curre	nt in a coil that links	
	the other coil			
	Explanation of coefficient of coupling:			
	Mathematical expression for coefficient of coupling is			
	K =	$= M / M_{max}$		
	But, $M_{max} =$	$\sqrt{(L_1L_2)}$		
	K =	$M / (\sqrt{L_1 L_2})$		
	> The maximum v	alue of K is 1 which represents the coupling of all flux	c produced by one	
	coil with the othe	er coil		
	 Corresponding to 	K = 1 the value of mutual inductance will be maxim	um and it is given	
	by, $M_{max} = \sqrt{(L)}$	$_{1}L_{2}$) Corresponding to K = 1		
	The coupling bet	ween the two coils is said to be a tight coupling if K =	= 1 and the coupling	
	is called as loose	coupling if K is less than one.		
	> The coefficient of	f coupling is also called as Magnetic coupling Coeffic	cient.	
Q.6	Attempt any FOUR of	the following :	16 Marks	
<u>a)</u>	Define : i) MMF ii)	Reluctance iii) Fringing iv) Leakage flux	(1 Marks)	
Alls.	It is the force that d	ives magnetic flux through magnetic circuit. It is mea	(1 Marks)	
		ives magnetie nux through magnetie cheute. It is mea	sured in amp-turns.	
	ii) Reluctance (s) :-		(1 Marks)	
	Reluctance is the	e property of the substance which opposes the creation	on of flux in it.	
	iii) Fringing:		(1 Marks)	
	When the magnet	ic flux passing or crossing an air gap then it tends to b	oulge outwards the	
	iron ring, this effect i	s called as "Fringing".		
	iv) Leakage flux:		(1 Marks)	
	Some flux while	passing through the magnetic circuit, leaks through the	e air surrounding the	
	core. This flux is call	ed as leakage flux.		

S	Subject Code: 17214 <u>Model Answer</u>	Page 25 of 27
b)	A coil of 100 turns is linked by a flux 20 mWb. If the flux is reversed in Calculate average emf induced in the coil.	n time of 2 m sec.
Ans:	Given Data:	
	N = 100, $\phi_1 = 200 \ mwb = 20 \times 10^{-1} \ wb = t = 2m \sec 2 \times 10^{-1} \ \sec 2$	
	Average emf induced in the coil:	
	Avg induced $emf = -N \frac{d\phi}{dt}$	(1 Mark)
	$d\phi = 20 \times 10^{-3} - 20 \times 10^{-3}$	
	$d\phi = -40 \times 10^{-3} \ wb$	(1 Mark)
	$-100(-40 \times 10^{-3})$	
	Avg induced emf $e = \frac{100(10 \times 10^{-7})}{2 \times 10^{-3}}$	
	Avg induced emf $e = 2000 \text{ volt}$	(2 Mark)
c)	Define :i) Self inductance ii) Coefficient of self induction	
Ans:	i) Self-inductance:	(2 Marks)
	It is the property by virtue of which a coil opposes change in current	flowing through it
	by inducing an emf in it such that its effect is to circulate current (induced	current) that
	produces a magnetic field which opposes the change in the field.	
	OR	
	Equation for self-inductance:	
	$L \frac{d\phi}{di} OR L = \frac{d\phi}{I} OR L = \frac{N^2}{S}$	
	where, L is the coefficient of self-inductance,	
	N is the no. of turns of coil,	
	dØ is the change in the flux,	
	di is the change in current,	
	S is the reluctance of magnetic path.	
	ii) Coefficient of self induction:	(2 Marks)
	Coefficient of self- induction of a coil is defined as the ratio of the electr	omotive force
	produced in a coil by self-induction to the rate of change of current producin	g it.
	OR	

	SUMMER-2018 Examinations			
S	Subject Code: 17214 Model Answer	Page 26 of 27		
	$L \frac{N \frac{d\phi}{dt}}{\frac{di}{dt}} \qquad N = \frac{di}{dt} \qquad N = \frac{\phi}{I}$			
	It is expressed in henry.			
d)	i) Define AH efficiency of Watt-Hr efficiency of a battery. ii) State applications of storage batteries.			
Ans:	: i) Definition of AH efficiency of Watt-Hr efficiency of a battery: AH efficiency: Ampere-hour efficiency of a battery is defined as the in amp-hour during discharging to the input amp-hour of battery $\eta_{AH} = \frac{amp \ hours \ during \ discharge}{amp \ hours \ during \ Charge}$	(1 Mark) ratio of the output of battery y during charging.		
	OR			
	(1 Mark) Watt-hours, to the input nditions, is called Watt-hour			
	OR			
	$\eta_{Wh} = \frac{Watt \ hours \ during \ disch \arg e}{Watt \ hours \ during \ Ch \arg e}$			
e)	 ii) Applications of storage batteries: (Any Four expected: 1/2 mark each, Total 2 Mark) Broadcasting stations. Transmission and distribution substations. Telephone and telegraphic services. Emergency lighting for hospitals, shops, banks etc. Automobiles. Solar street lights Railway signaling system UPS systems Marine and submarine applications Give the properties and application of following materials :i) mica ii) rubber 			
<u> </u>	i) Give the properties and application of following materials :1) mic			
All5.	Properties of Mica: (Any one proj	perties expected: 1 Marks)		
	1. It has very high resistance			
	2. It is heat resistant, moisture resistant, it has good elasticity an	d is fire proof.		

Subject Code: 17214 **Model Answer** Page 27 of 27 3. It retains its electrical and mechanical properties even at very high temperature. (Any one properties expected: 1 Marks) **Applications of Mica:** 1. It is used in commutator, insulators in electric heating units. 2. It is used for binding armature winding. 3. Mica papers are used in rotor winding, turbo generator ii) Rubber: **Properties of Rubber:** (Any one properties expected: 1 Marks) 1. Rubber is moisture repellent and possesses good insulating properties. 2. Its specific resistance around is 10^{17} ohm/cm 3. Vulcanized rubber is more resistant, mechanically strong and tough, elastic and can withstands high temperature. 4. It can be affected chemically. 5. It has low heat resistance. **Applications of Rubber:** (Any one properties expected: 1 Marks) 1. It is extensively used as insulation on wires, cables etc. **f**) State the temperature with standing capacity of following class-insulating material class Y, class A, class B, class E. Also state two examples for each. Ans: (Each Point : 1 Mark) S.No Class of Temperature Examples Insulating withstanding capacity ⁰C material Class 'Y' $90^{\circ}C$ Cotton, Silk paper and similar organic 1 materials neither impregnated nor immersed in oil, rubber, PVC 2 Class 'A' $105^{\circ}C$ Impregnated paper, Silk, cotton and polyamides resins 130^{0} C Class 'B' Inorganic materials (mica, fiber, glass, 3 asbestos) impregnated with varnish and other compounds Class 'E' $120^{0}C$ Cotton fabric, synthetic resin enamels. 4 Paper laminates and Powder plastics

-----END------