

SUMMER-18 EXAMINATION

Model Answer

Subject Code:

17210

Subject Name: Applied Physics Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any NINE of the following:	18
	a)	State Ohm's law with mathematical equation. Statement Mathematical equation Ohm's law: If physical state of the conductor remains same, the potential difference between two ends of the conductor is directly proportional to the current flowing through it.	2 1 1
	b)	V = IR Explain the principle of potentiometer. Principle and explanation The fall of potential is directly proportional to the length of conducting wire.	2 2

Su	bject N	SUMMER- 18 EXAMINATION Jame: Applied Physics Model Answer Subject Code : 1	17210
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	b)	The potential difference between two points of conductive wire is directly proportional to the length/distance between the two points. $V \propto L$	
	c)	Draw a neat diagram of Wheatstone's network. Diagram with labels I R R R R R R R R R R	2
	d)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2 1 1
	e)	 Define conduction band & forbidden energy gap. Each definition Conduction band :Range of energy possessed by conduction electrons is called conduction band. Forbidden energy gap : The energy difference between conduction band and valance band is called forbidden energy gap. 	

		SUMMER- 18 EXAMINATION	
Su	bject N	Jame: Applied Physics <u>Model Answer</u> Subject Code: <u>1</u>	7210
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	f)	State the values or range of values of energy band for conductor, semiconductor & insulator. Three values Conductor : no gap Semiconductor : 1 eV Insulator : 5.5 eV	2 2
	g)	State Planck's Hypothesis Statement Planck's Hypothesis: Planck's proposed the quantum theory for explanation of energy distribution in a black body radiation. According to this theory energy is not emitted or absorbed continuously but in a discrete units or packets called photon or quanta. The photons are electrically neutral and traveled with speed of light i.e. the radiation considers as shower of photons. The energy E associated with photon is directly proportional to frequency of light.	
	h)	An X-ray tube is operated at 50 kV. What will be the wavelength of x-rays emitted in it? Formula with substitution Answer with unit Given : $V = 50 \text{ kV} = 50 \text{ x } 10^3 \text{ V}$ $\lambda = ?$ $\lambda = 12400 / \text{ V}$ $= 12400 / \text{ 50 x } 10^3$ $\lambda = 0.248 \text{ A}^0 = 0.248 \text{ x} 10^{-10} \text{ m}$	2 1 1
	i)	State two points of differentiation between spontaneous emission and stimulated emission. Two points	2

C- -1	hicat N		8 EXAMINATION	aat Cadaa	17210
0.	Sub Q. N.		e <u>l Answer</u> Subj Answer	ect Code:	Marking Scheme
[i)	Spontaneous emission	Stimulated emission		
		Excited atoms comes to ground state on its own accord Radiations are in random direction , phase and wavelength Independent of outside circumstances No metastable state exist	 Excited atoms comes to group state after interaction with incident photon. Radiations are coherent , monochromatic and in same direction. Dependent of outside circumstances Metastable state exist 		
		(ordinary exited state) Number of photons emitted are less	Number of photons emitted more	are	
	j)	Define: Optical pumping & Population Each definition Optical pumping:- The process of raising energy state using light medium is called Population inversion:- Making the popu	g the atoms from lower energy optical pumping.	-	2 1 her
		population of lower energy level by using			n.

SUMMER-18 EXAMINATION

Answer	Marking Scheme
Define nanometer & nanoparticle. Each definition Nanometer: A nanometer is a billionth of a meter. Nanoparticle: Nanoparticles are particles whose dimensions(any one or many) are	2 1
between 1 and 100 nanometres (nm). State two properties of nanoparticle. Any two properties i. Mechanical property. ii. Structural property. iii. Thermal property. iv. Electric property. v. Magnetic property. vi. Optical property.	22
	 Each definition Nanometer: A nanometer is a billionth of a meter. Nanoparticle: Nanoparticles are particles whose dimensions(any one or many) are between 1 and 100 nanometres (nm). State two properties of nanoparticle. Any two properties Mechanical property. Structural property. Thermal property. Electric property. Magnetic property.

		SUMMER- 18 EXAMINATION	
Subje	ect Nan	e: Applied Physics <u>Model Answer</u> Subject Code: <u>172</u>	10
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.		Attempt any FOUR of the following:	16
	a)	The specific resistance of the material of the wire is $3 \times 10^{-7} \Omega$ -m. If the resistance of the wire is 4Ω and radius of the wire is 0.6 mm, calculate the length of wire Formula with substitution Answer with unit Given : L = ? Radius = r = 0.6 x 10 ⁻³ m $\rho = 3 \times 10^{-7} \Omega$ -m. R = 4 Ω We have $\rho = RA/L$ $L = RA/\rho = 4 \times 3.14 \times (0.6 \times 10^{-3})^2 / 3 \times 10^{-7}$ L = 15.07 m	4 2 2
	b)	State and explain the balancing condition of Wheatstone's network. Diagram Explanation $I \xrightarrow{I}_{P_4} \xrightarrow{R_2}_{P_4} \xrightarrow{R_2}_{P_4} \xrightarrow{R_2}_{P_4} \xrightarrow{R_2}_{P_4} \xrightarrow{R_2}_{P_4} \xrightarrow{R_2}_{P_4}$ In this network R_1, R_2, R_3 are kept constant and R_4 is so adjusted that galvanometer shows zero deflection. When galvanometer shows zero deflection, network is said to be balanced.	4 2 2

		SUMMER- 18 EXAMINATION				
ubje	ct Nan	ne: Applied Physics	Model Answer	Subject Code:	17210	
Q. No.	Sub Q. N.		Answer		Marking Scheme	
2.	b)	(P.D. across AB) =(P.D. a (P.D. across BC)= (P.D. a Using Ohm's law, $I_1R_1 = I_2R$ $I_1R_2 = I_2R$ Dividing equation (1) by	4(1) 3(2)		le if ,	
	c)	Obtain the expression fo parallel combination. Well Labeled Diagram Explanation & Substitu Final Expression		quivalent condenser	4 2 1 1	
			+Q		8	

		SUMMER- 18 EXAMINA	ATION		
ct Nan	ne: Applied Physics	Model Answer	Subject Code:	17210	
Sub Q. N.		Answer		Mar Sch	rking eme
c)	Resultant Capacitan	ce when three Condensers are	Connected in parallel :		
	with potential difference	nce of V volt. When condenser a across each condenser remain	are connected in paralle as the same V and the	the total charge on	
	Q =	$Q_1 + Q_2 + Q_3$ (1)			
	But	$C = \frac{Q}{V}$			
	Therefore,	Q = CV			
	Charge on C_1 is	$Q_1 = C_1 V$			
	Charge on C_2 is	$Q_2 = C_2 V$			
	Charge on C_3 is	$Q_3 = C_3 V$			
	Substituting above va	lues in equation (1)			
	CV =	$C_1 V + C_2 V + C_3 V$			
_`	C =	$C_1 + C_2 + C_3$			
d)	mm. Dielectric const of the condenser.(ε_0 Formula and substit Answer with unit Given:- A= 1.6 m ²	ant of the material between the = 8.85x10 ⁻¹²) ution	-		
	Sub Q. N.	Q. N.Resultant Capacitantc)Resultant CapacitantConsider three conderwith potential difference each condenser gets capacitor $Q =$ ButTherefore, Charge on C_1 isCharge on C_2 is Charge on C_3 is Substituting above value $CV =$ $CV =$ $C =$ d)d)Area of parallel plat mm. Dielectric const of the condenser.(ϵ_0 Formula and substit Answer with unit Given:- $A = 1.6 m^2$	ct Name: Applied PhysicsModel AnswerSub Q. N.Answerc)Resultant Capacitance when three Condensers are Consider three condensers $C_1, C_2 & C_3$ are connected with potential difference of V volt. When condenser potential difference across each condenser remain each condenser gets divided into three parts Q_1, Q_2 capacitor $Q = Q_1 + Q_2 + Q_3$	Sub Q. N.Answerc)Resultant Capacitance when three Condensers are Connected in parallel : Consider three condensers $C_1, C_2 \& C_3$ are connected in parallel between two with potential difference of V volt. When condenser are connected in parallel potential difference across each condenser remains the same V and the each condenser gets divided into three parts $Q_1, Q_2 \& Q_3$ which depends or capacitor $Q = Q_1 + Q_2 + Q_3$	Sub Q. N. Model Answer Subject Code: 17210 Sub Q. N. Answer Ma Sch c) Resultant Capacitance when three Condensers are Connected in parallel to total potential difference of V volt. When condenser are connected in parallel between two points AB with potential difference across each condenser remains the same V and the charge on each condenser gets divided into three parts Q ₁ , Q ₂ & Q ₃ which depends on values of capacitor $Q = Q_1 + Q_2 + Q_3$ $Q = Q_1 + Q_2 + Q_3$ $Q_2 = Q_2$ which depends on values of capacitor $Q = Q_1 + Q_2 + Q_3$ $Resultant C = \frac{Q}{V}$ Therefore, $Q = CV$ Therefore, $Q = CV$ Charge on C_1 is $Q_1 = C_1 V$ Charge on C_3 is $Q_3 = C_3 V$ Substituting above values in equation (1) $CV = C_1V + C_2V + C_3V$ $CV = V(C_1 + C_2 + C_3)$ $C = C_1 + C_2 + C_3$ d) Area of parallel plate condenser is 1.6 m ² and distance between the two plates is 1.2 m. m. Dielectric constant of the material between the two plates is 3.Find capacitance of the condenser. ($\varepsilon_0 = 8.85x10^{-12}$) 4 $P = 1.6 m^2$ 2

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Sub Marking Q. Answer No. Q. Scheme N. $\epsilon_0 = 8.85 \times 10^{-12}$ 2. **d**) k = 3 Required: C=? $\therefore C = \varepsilon_0 k \frac{A}{d}$ $C = 8.85 \times 10^{-12} \times 3 \times 1.6 / 1.2 \times 10^{-3}$ $C = 3.54 \times 10^{-8} F$ **Distinguish between P-type and N-type semiconductor.** e) 4 Any four points 4 Sr. **N- type Semiconductor P- type Semiconductor** No When small amount of When small amount of trivalent 1 pentavalent impurity is added to impurity is added to a pure a pure semiconductor is called semiconductor is called P-type N-type semiconductor semiconductor Impurity is used for doping is Impurity is used for doping is 2 arsenic, antimony, phosphorus gallium, indium, boron, aluminium It is called donor impurity 3 It is called acceptor impurity 4 There are excess of electrons There are shortage of electrons 5 The electrons are majority The holes are majority carriers carriers

		SUMMER– 18 EXAMINA	TION		
Subje	ect Nar	ne: Applied Physics <u>Model Answer</u>	Subject Code:	17210	0
Q. No.	Sub Q. N.	Answer			Marking Scheme
2.	f)	Plot and explain I -V characteristics of a PN junction of Diagram Explanation Explanation V Breakdown voltage Va(v) Ja(mA) Reverse Bias In forward bias mode P-type of semiconductor is connect type of semiconductor is connected to negative terminal current starts flowing through diode. When the voltagreaches to 0.7V (Si) the current flows through the diode current as shown above. In reverse bias mode P-type of semiconductor is connect type of semiconductor is connected to negative terminal current starts flowing through diode. When the voltagreaches to 0.7V (Si) the current flows through the diode current as shown above. In reverse bias mode P-type of semiconductor is connect type of semiconductor is connected to positive termi produced is due to minority charge carriers. This current reverse biased voltage is increased at a critical voltage V the diode increases sharply. Most of the diodes have bread	Forward Bias V_{V} = cut in voltage V $V_{f(V)}$ cted to positive termin of battery. As voltage ge applied across PN e i.e. the diode start c reted to negative termin nal of battery. In th is called leakage current V_{BR} , the reverse current	e increases N junction conducting hal and N- is current ent. As the nt through	4 2 2

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Sub Marking Answer Q. Q. Scheme N. No. 3. Attempt any FOUR of the following: 16 a) Draw the energy band diagram for conductor, semiconductor & insulator. 4 **Three Diagrams with label** 4 **Conductor:** Conduction band Overlapping Band energy Valence band Semiconductor: Conduction band Eg of 1eV Energy Valence band **Insulator:** Conduction band E_g > 5.5 eV Energy Valence band

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Q. Sub Marking Answer No. Q. Scheme N. The threshold frequency of a metal is 1.2×10^{15} Hz. If the light of frequency 1.5x 3. b) 4 10¹⁵ Hz is made incident on the metal plate, Calculate the maximum K.E. of the ejected photoelectron. ($h = 6.625 \times 10^{-34} \text{ J-sec}$) 2 Formula and Substitution 2 Answer with unit Given: **Required:** $v_0 = 1.2 \text{ x } 10^{15} \text{ Hz}$ $v = 1.5 \times 10^{15} \text{ Hz}$ E = ? $h = 6.625 \text{ x} 10^{-34} \text{ Js}$ $$\begin{split} E &= h \left(\upsilon - \upsilon_0 \right) \\ &= 6.625 \ x 10^{-34} \left(1.5 x \ 10^{15} - 1.2 \ x \ 10^{15} \right) \\ &= \textbf{1.995} \ \textbf{x} \ \textbf{10^{-19}} \ \textbf{J} \\ &= \textbf{1.24} \ \textbf{eV} \end{split}$$ State four properties of X-rays. 4 c) **Any four Properties** 4 They are electromagnetic waves of very short wavelength i. They travel with speed of light. ii. They affect photographic plates. iii. They produce fluorescence in many substances. iv. They can be reflected or refracted under certain conditions. v. They are not deflected by magnetic or electric field. vi. They have high penetrating power. vii. They produce photoelectric effect. viii. They are invisible to eyes. ix. X-ray kill some form of animal cell x. d) 4 Explain with the help of neat & labeled diagram the working of He-Ne laser. 1 Each diagram 1 construction 1 working Quertz Tube Mbduns of He-Ne Ga

SUMMER-18 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	d)	 Construction : 1. It consists of a quartz tube of about 80 cm length and 1.5 cm diameter. 2. The tube is filled with mixture of helium (He) and neon (Ne) gas. 3. The mixture consists of 90% helium atoms and 10% neon atoms. 4. At one end perfect reflector is fixed and at the other end partial reflector is fixed. 	
		 Working : (1)When electric discharge is produced in the tube, He and Ne gas atoms are excited. Some excited levels of helium are close to some excited levels of neon. Therefore these excited helium atoms collide with excited atoms of neon and transfer the energy to neon atoms. (2) The actual lasing action is done by neon atoms. The neon atoms with extra energy from helium atom are forced to jump in ground state by emitting a photon. This produces the LASER light. The newly emitted photon triggers the next neon atom and increases the radiations. (3) Thus coherent, monochromatic, unidirectional LASER is produced by He-Ne gas LASER The energy level diagram of He-Ne LASER is shown below. 	
		He atom Ne atom Metastable States	
		H ₃ H ₃ H ₂ H ₃ H	

			SUMMER- 18 EXAMIN	ATION		
Subje	ct Nan	e: Applied Physics	Model Answer	Subject Code:	17210)
Q. No.	Sub Q. N.		Answer			Marking Scheme
3.	e) i) ii)	symbol. Equation Symbols $E = h (v - E = Kinetic energy, h = P v_0 = Threshold frequency, c = velocity of light.$ State any two Engg. app Each application. Application of X-rays: i)X- rays are used to dete ii) X- rays are used to dete quality control. iii) X - rays are used to dete	lectric equation of photo – e v_0) = h c($1/\lambda - 1/\lambda_0$) Plank's constant, v = Frequence y , λ = wavelength of incident plication of X-Rays. et the cracks in the body of ae tect the manufacturing defects letect flows or cracks in metal stinguish real diamond from d	cy of incident light , i light , $λ_0$ = Threshold v roplane . in rubber tyres or tenni jobs	wavelength	2 1 1 2 1
	f)	vi) X-rays are used to det vii) X- ray radiography is	ect smuggling gold at airport feet cracks in the wall. s used to check the quality of very solution of the section of the sect	welded joints.		4 1
		 Data storage system - on substrate to form the c Use of nonmaterial in fuel are depleting day by Application in autom can be produced by using uniform layer of coating of Application in consurt 	energy sector – The convent day, thus use of alternative en obiles- High mechanical stren g nanotechnology. Nano painti on the vehicle body. ner goods – Nanotechnology oducts and textiles. Using nan-	tional energy sources lib lergy source is inevitable of the material but light in ng materials can be use has wide applications in	ke coal, le. n weight ed to get n	