

SUMMER-2018 Examinations

Subject Code: 17318

Model Answer

Page 1 of 37

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A	Attempt any SIX of the following : 12 Marks		
a)	Define form factor for a sine wave. State its value.		
Ans:	1. Form factor :(Definition 1 Mark& Value: 1 Mark)		
	It is defined as the ratio of RMS value to the Average value of an alternating quantity $FF = \frac{RMS \ VALUE}{AVERAGE \ VALUE}$		
	Value of Form factor: 1.11 (for a sinusoidal quantity)		
b)	Define bandwidth of a series resonant circuit and give the expression for the same.		
Ans:	Bandwidth of a series resonant circuit: (1 Mark)		
	The bandwidth of the series circuit is defined as difference in two half power frequencies.		
	$BW = f_H - f_L$		
	$1 = \frac{V}{R}$ $0.707 I_{resc}$ $-3d8$ $-3d8$ $-\frac{-3d8}{Frequency}$ Frequency, <i>T</i> $Lower frequency$		

	SUMMER-2018 Examinations
	Subject Code: 17318Model AnswerPage 2 of 37
	Expression of Bandwidth of a series resonant circuit:
	Bandwidth BW is given by: $BW = \frac{R}{L}$ (1 Mark)
c)	State two advantages of three phase system over single phase system.
Ans:	Advantages of 3-phase supply over 1-phase supply:(Any Two points each point 1 Mark)
	1. Constant power output: The power delivered by a three phase supply is constant and that of single phase supply is oscillating.
	2. Higher power: For the same copper size output of 3 phase supply is always higher than single phase supply.
	3. Smaller conductor cross section: For given power, cross section area of copper is smaller as compared to single phase.
	4. Self starting capability: Three phase motors are self-starting and single phase motors normally require a starter.
	5. Vibrations: Three phase motors have less vibrations as compared to single phase motors.
d)	State Fleming's Right hand rule.
	Fleming's Right Hand Rule: (2 Mark)
Ans:	Arrange three fingers of right hand mutually perpendicular to each other, if the first figure indicates
	the direction of flux, thumb indicates the direction of motion of the conductor, then the
	middle finger will point out the direction of inducted current.
e)	State Faraday's laws of electromagnetic induction.
Ans:	First Law: - Whenever change in the magnetic flux linked with a coil or conductor, an EMF is
	induced in it. OR Whenever a conductor cuts magnetic flux, an EMF is induced in
	conductor. (1 Mark)
	Second Law: - The Magnitude of induced EMF is directly proportional to (equal to) the rate of
	change of flux linkages. (1 Mark)
	$e = \frac{-N}{dt}d\phi$
f)	Define slip and slip speed.
Ans:	i) Slip:- (1 Mark)
	It is the ratio the difference between the synchronous speed and actual speed of the rotor to

		SUMMER- 2018 Examinations			
	Subject Code: 17318	Model Answer	Page 3 of 37		
	synchronous speed.				
	It is expression in pe	ercentage =			
	% Slip =	$\frac{N_s - N}{N_s}$			
	ii) Slip speed =		(1 Mark)		
	It is defined as the	e difference of synchronous speed and	l speed at which motor is rotating		
	$N_s - N$				
	Wh	ere, Ns= Synchronous speed, N=	Rotor speed		
g)	State any two speed contro	l methods for three phase induction	n motor.		
	Following methods to cont	trol the speed of 3 phase induction r	notor: (2 Mark)		
	(Any Two methods are ex	pected)			
	The basic equation for speed	d of three ph. I.M. is given by			
	$N = \frac{120.f}{R}$				
Ans:	P Second car be controlled by				
	1 By Varying supply from	anay (kaoping voltage/frag ratio const	tant)		
	2. By changing number of n	cles of the stator winding (Pole chan	ging control)		
	2. By changing number of poles of the stator winding (Pole changing control)				
	3. By controlling supply voltage				
b)	State the necessity of earth	ing			
Ans:	State the necessity of cartin	ing.			
	Necessity of Earthing: (A	Any Two point are expected)	(2 Mark)		
	1. To provide an altern	ative path for the leakage current to f	low towards earth.		
	2. To save human life f	from danger of electrical shock due to	eleakage current.		
	3. To protect high rise	buildings structure against lightening	stroke.		
	4. To provide safe path	to dissipate lightning and short circu	it currents.		
	5. To provide stable pla	atform for operation of sensitive elect	ronic equipment's.		

SUMMER-2018 Examinations

Model Answer

Page 4 of 37

	Subject Co	de: 17318	SUMMER– 2018 Examination <u>Model Answer</u>	Page 6 of 37
	Relation	Between Voltage & (Current:	
	i) T	`he relation between li	ne voltage and phase voltage in	delta connected circuit
		$V_{ph} = V_L$ wher	$veV_L = linevoltage \& Vph = Pha$	sevolatge (1Mark)
	ii) T	The relation between li	ne current and phase current in	delta connected circuit.
	<i>I</i> _{<i>L</i>} =	$=\sqrt{3}$ I_{ph} OR $I_{ph} = I$	$I_L/\sqrt{3}$ where I_L is line Curre	nt and I_{ph} is phase Currnts (1 Mark)
c)	Compare torque (ii	squirrel cage & slip i) Efficiency (iv) App	ring induction motor based o lication	n (i) Rotor construction (ii) Starting
Ans:				(1 Mark each Point)
	S.No.	Compare point	3-phase squirrel cage I.M	Slip ring 3-Ph I.M
	i)	Rotor construction	Rotor is in the form of bars	Rotor is in the form of 3-
			like a squirrel cage	ph winding
	ii	Starting torque	Starting torque is of fixed	Starting torque can be adjust
	iii)	Efficiency	High efficiency	Low efficiency
	iv)	Application	For driving constant load e.g. Lathe Machine, Workshop Machine and water pump and constant speed applications	For driving heavy load where high starting torque is required e.g. Lift, Crane, Elevators, conveyor belts etc. and variable speed applications
Q.2	Attempt	any FOUR of the fol	lowing : 16 Marks	
a)	Give the Canacitiv	definition and exp	pression for the following te bedance (iv) Power Factor	rms : (i) Inductive Reactance (ii)
Ans:	Cupuciti	e Reactance (m) m		Each definition 1 Mark each)
	(i) Indu	ctive reactance – It is	s defined as the opposition to flo	ow of current offered by inductor. It is
	deno	ted by X_L .	V O FI	
		• / •	$\mathbf{X}_{\mathrm{L}} = 2\Pi \mathbf{F} \mathbf{L}$	
	(n) Cap	acitive reactance – If	t is defined as the opposition to	flow of current by capacitor. It is
	deno	oted by X _{C.}		

	SUMMER- 2018 Examinations	Dama 7 of 27
	Subject Code: 1/318 <u>Model Answer</u>	Page 7 of 37
	$X_{C} = 1/2\pi FC$	
	(iii) Impedance - It is defined as the total opposition to flow of current pr	esent in the circuit. It is
	denoted by Z. $Z = \sqrt{R^2 + (X_L - Xc)^2}$	
	$Z = R + jX_L$ (For inductive reactance)	
	$Z = R + jX_C$ (For capacitive reactance)	
	(iv) Power factor – It is the cosine of angle between voltage and current.	
	Power factor = $\cos \phi$ $Cos\theta = \frac{R}{Z}$	
b)	Explain the phenomenon of resonance in RLC series circuit.	
Ans:	Explanation of resonance in R-L-C series circuit :	(4 Marks)
	The resonance of a series RLC circuit occurs when the inductiv	e and capacitive
	reactances are equal in magnitude.	
	UR Resonance is the phenomenon in AC circuit in which circuit evi	nibits unity nower
	factor or applied voltage and resulting current are in phase with each othe	er.
	\succ Under series resonance condition $X_L = X_C$,	
	> Power factor is unity or 1 i.e. $\cos \Phi = 1$	
	$\blacktriangleright \text{ Impedance } (Z) = \text{resistance } (R)$	
	Current is maximum	
	1. Condition for resonance:	(2 Mark)
		()
		;
	In a series RLC circuit the Series Resonance occurs at po	int were the inductive
	reactance of the inductor becomes equal in value to the capacitive reactance	ance of the capacitor. In
	other words, $\mathbf{XL} = \mathbf{XC}$.	
	2. Value of current during series resonance.	(1 Mark)
	Current during series resonance is maximum as value of impedance is	s equal to resistance in

	SUMMER- 2018 Exa	minations
Subjec	ct Code: 17318 Model Answe	<u>r</u> Page 9 of 37
d) State	e different types of power in AC circuits. Write	its expression and unit.
Ans: Di	fferent types of power in A.C circuit:	
i) A	Active Power (P):-	(1.5 Mark)
Т	The active power is defined as the average power l	Pavg taken by or consumed by the given circuit
	$P = V.I.Cos\phi$ Unit: - Watt OR Kilowa	att
ii) Ro	eactive Power (Q):-	(1.5 Mark)
Т	The reactive power is defined as the product of V,	I and sine of angle between V and I i.e. ϕ
	Q= V.I. sin ϕ	
	Units: - VAR ORKVAR	
iii) A	Apparent Power (S):	(1 Mark)
	$KVA = \sqrt{KW^2 + KVAR^2}$	
	Unit: volt-ampere (VA) or kilo-volt-a	Impere (kVA) or Mega-volt-ampere (MVA)
	S=VI=I ² Z volt-amp	
	OR	
Eq	uation For three phase:-	
	1. Active Power $P = \sqrt{3}$ VL IL Cos Φ (Watt or 2)	Kilo watt) (1/2 Mark)
	2. Reactive Power $Q = \sqrt{3}$ VL IL Sin Φ (VAR o	r kVAR) (1/2 Mark)
	3. Apparent Power S = $\sqrt{3}$ VL IL (VA or kVA)	(1/2 Mark)
Eq	uation For Single phase:-	
	1. Active Power $P = V I \cos \Phi$ (Watt or Kilo v	vatt) (1/2 Mark)
	2. Reactive Power $Q = V I \sin \Phi$ (VAR or kV	AR) (1/2 Mark)
	3. Apparent Power $S = V I$ (VA or kVA)	(1/2 Mark)
Re	lation between power	
S	$=\sqrt{P^2+Q^2}$	(1 Mark)

Subject Code: 17318

Page 11 of 37

			SUMMER- 2018 Examination	S
	Subject C	ode: 17318	Model Answer	Page 12 of 3
		Fig: c	$\begin{array}{c} 240^{\circ}\\ \hline \\ E_{b,b_2} \end{array}$	he armature
f)	Compa	re autotransformer &	two winding transformer. (any	y 4)
Ans:			(Any four p	oints expected: Each point 1 Ma
	S.No.	Points	Autotransformer	Two winding transformer
	1.	Symbol		
	2.	Number of	It has one winding	It has two windings
	3.	Copper saving	Copper saving takes more as compared to two winding	Copper saving is less
	4.	Size	Size is small	Size is large
	5	cost	Cost is low	Cost is high
	6	Losses in winding	Less losses takes place	More losses takes place
	7.	Efficiency	Efficiency is low	Efficiency is high
	8.	Electrical isolation	There is no electrical isolation	Electrical isolation is present in between primary and secondary winding
	9.	Movable contact	Movable contact is present	Movable contact is not present
	11.	Application	Variac, starting of ac motors, dimmerstat.	Mains transformer, power supply, welding, isolation transformer

SUMMER- 2018 Examinations

Subject Code: 17318

Model Answer

Page 13 of 37

Q.3	Attempt any FOUR of the following : 16 Marks				
a)	Compare dc supply with ac supply.				
Ans:	Differentiate DC supply with AC supply: (Any Four Point Expected : 1 Mark each)			1	
	S.No.	Points	DC Supply	AC Supply	
	1.	Wave form	Direct Current	Alternating Current	
	2	Cause of the direction of flow of electrons	Steady magnetism along the wire	Rotating magnet along the wire	
	3	Frequency	The frequency of direct current is zero.	The frequency of alternating current is 50Hz or 60Hz depending upon the country.	
	4	Direction	It flows in one direction in the circuit.	It reverses its direction while flowing in a circuit.	
	5	Current	It is the current of constant magnitude.	It is the current of magnitude varying with time	
	6	Flow of Electrons	Electrons move steadily in one direction or 'forward'.	Electrons keep switching directions - forward and backward.	
	7	Obtained from	Cell or Battery or D.C. generator	A.C Generator and mains.	
	8	Passive Parameters	Resistance only	Impedance.	
b)	Define	leading and lagging a	nc quantities. Draw wavef	form representation and equati	ions
Ans	represei	(Meaning - 2 Marks)	Waveforms representation &	& Equation -2 Marks)	
7 1115.	i) Lea	ding AC Quantities:	vavelorms representation	a Equation -2 marks)	
		Whenever there is a pos	sitive phase difference betwee	n AC waveform and reference	
		waveform then the AC w	waveform is leading with resp	ect to reference.	
	ii) Lag	ging AC Quantities:			
		Whenever there is a neg	gative phase difference betwee	en AC waveform and reference	
		waveform then the AC w	vaveform is lagging with resp	pect to reference.	

	SUMMER-2018 Examinations				
	Subject Co	de: 17318 Model Ans	wer Page 15 of 37		
	iv) Ind	uctance L:			
		$\therefore X_L^2 = Z^2 - R^2 -$	(1/2 Mark)		
	$\therefore X_L = \sqrt{Z^2 - R^2}$				
		$\therefore X_{L} = \sqrt{28.75^{2} - 14.95^{2}}$			
		$X_{L} = 24.55\Omega$			
		$\therefore X_L = 2 * \pi * f * L$			
		$\therefore L = \frac{X_L}{2 * \pi * f}$			
		$\therefore L = \frac{24.55}{}$			
		$2 * \pi * 50$			
J)	Commons	L=0.0781 H	(1/2 Wark)		
Ans:	Compare	Magnetic and Electric circuit:	(Any Four Point expected : 1 Mark each)		
	S No.	Mognotia sinovit	Electric circuit		
	5.110	Magnetic circuit	Electric circuit		
	1	The magnetic circuit in which	Path traced by the current is known as		
		magnetic flux flow	electric current.		
	2	MMF is the driving force in the	EMF is the driving force in the electric		
		magnetic circuit. The unit is ampere	circuit. The unit is Volts.		
		turns.			
	3	There is flux φ in the magnetic circuit	There is a current I in the electric circuit		
	4	which is measured in the weber.	which is measured in amperes.		
	4	decides the flux	conductor		
	5	Reluctance (S) is opposed by magnetic	Resistance (R) oppose the flow of the		
	5	path to the flux.	current.		
		The Unit is ampere turn/weber.	The unit is Ohm		
	6	$S = l/(\mu_0\mu_r a).$	$R = \rho \cdot l/a$.		
		Directly proportional to 1. Inversely	Directly proportional to l.		
		proportional to $\mu = \mu_0 \mu_r$.	Inversely proportional to a.		
		Inversely proportional to a	Depends on nature of material.		
	7	The Flux = MMF/ Reluctance	The current $I = EMF/$ Resistance		
	8	The flux density	The current density		
	9	Kirchhoff mmf law and flux law is	Kirchhoff current law and voltage law is		
		applicable to the magnetic flux	applicable to the electric circuit		

- ii) Electronics Testing
- iii) Supply of equipment
- iv) Computers & Peripherals
- v) Analytical Instruments
- vi) Communication Equipment's
- vii) CNC Machines
- viii) Medical Instruments

SUMMER- 2018 Examinations

Subject Code: 17318

Model Answer

Page 18 of 37

Q.4	Attempt any FOUR of the following : 16 Marks
	A coil of resistance 10 ohm and 0.1 H is connected in series with a capacitance of 150 μ F across
a)	230 V, 50 Hz ac supply. Calculate impedance, current, power factor and power consumed by
	the circuit.
Ans:	I = V/Z
	i) $X_L =$
	$X_L = 2\pi f L$
	$=2\pi\times50\times0.1$
	$X_L = 31.4 \Omega$
	ii) $\mathbf{X}_{\mathbf{C}}$ =
	$\mathbf{v} = 1$
	$X_C = \frac{1}{2\pi f C}$
	1
	$-\frac{1}{2\pi \times 50 \times 150 \times 10^{-6}}$
	$X_c = 21.22 \ \Omega$
	iii) Impedance Z =
	Im pedance $Z = \sqrt{(R)^2 + (X_1 - X_c)^2}$ (1/2 Mark)
	$\therefore Z = \sqrt{10^2 + (31.4 - 21.22)^2}$
	:. $Z = 14.26 \Omega$ (1/2 Mark)
	iv) To Find Current=
	$I = \frac{V}{2}$
	230
	$I = \frac{14.26}{14.26} = 16.12$
	I=16.12 Amp
	iii) power factor
	$\cos \emptyset = \frac{R}{z} - \dots - (1/2 \text{ Mark})$
	$\cos \phi = \frac{10}{14.26} = 0.70$ (1/2 Mark)
	Power Consumed P :
	$\therefore P = V I \cos \phi (1/2 \text{ Mark})$
	P = 230 * 16.12 * 0.70
	P = 2596.77 Watt

	SUMMER- 2018 ExaminationsSubject Code: 17318Model AnswerPage 19 of 37
b)	State the emf equation of a single phase transformer. Define (i) Current Ratio (ii) Transformation Ratio (iii) Voltage Ratio
Ans:	EMF equation of 1-Ph Transformer:
	Let, N_1 = Number of turns in the primary
	N_2 = Number of turns in the Secondary
	Øm= Maximum flux in core (wb)= BmxA
	\mathbf{F} = Frequency
	$E_1 = 4.44 \text{ f} \phi m N_1$
	$\mathbf{E_1} = 4.44 \mathbf{f} \mathbf{BmAN_1}$
	Secondary winding:
	$E_2 = 4.44 \text{ f} \phi m N_2$
	$\mathbf{E}_2 = 4.44 \mathbf{f} \mathbf{Bm} \mathbf{A} \mathbf{N}_2$
	i) Current Ratio (I):
	ii) Transformation Ratio (k):
	iii) Voltage Ratio:(1 Marks) It is the ratio of secondary voltage to primary voltage.
	$Voltage\ ratio = \frac{V_1}{V_2}$

SUMMER- 2018 Examinations Model Answer

Page 21 of 37

Explanation:

Subject Code: 17318

- > It consist laminated cylindrical core and it carries three phase windings.
- > The rotor winding may be single layer or double layer.
- > The rotor winding is uniformly distributed in slots and it is always star connected.
- > Rotor is wound for same number of poles as that of the stator winding.
- Three phases of rotor winding is are shorted internally to form star point and other three winding terminals are brought out and joined to three insulated slip rings mounted on the rotor shaft.
- One brush is resting on each slip ring. These three brushes are further externally connected to three phase star connected rheostat.

OR

2. Constructional detail of Squirrel cage induction motor:

equivalent figure

Explanation:

- > It consist laminated cylindrical core having slots on its outer periphery.
- One copper or aluminum bar is placed in each slot. All the bars are joined at each end by metal rings called end rings.
- > Rotor bars are brazed or electrically welded or bolted to the end rings.
- > This form permanently short circuited winding which is non breakable.
- > The rotor slots are not parallel to the shaft but they are skewed at certain angle with the shaft.

Subject Code: 17318

SUMMER– 2018 Examinations <u>Model Answer</u>

Page 22 of 37

	Working principle of 3-phase induction motor:
	> When 3-phase stator winding is energized from a 3-phase supply, a rotating magnetic field is
	set up in air gap which rotates round the stator at synchronous speed Ns (= 120 f/P).
	The rotating field passes through the air gap and cuts the rotor conductors, which as yet, are stationary.
	> Due to the relative speed between the rotating flux and the stationary rotor, e.m.f. are
	induced in the rotor conductors.
	Since the rotor circuit is short-circuited, currents start flowing in the rotor conductors.
	> The current-carrying rotor conductors are placed in the magnetic field produced by the stator.
	➢ Consequently, mechanical force acts on the rotor conductors.
	> The sum of the mechanical forces on all the rotor conductors produces a torque which tends
	to move the rotor.
	➢ In the same direction as the rotating field according to Lenz's law.
e)	Draw schematic representation and explain the principle of working of split phase single phase
Ans	Induction motor. Circuit diagram of resistance split single phase induction motor:
7 1115.	(Figure : 2 Marks & Working : 2 Marks)
	Starting Winding Winding Winding Winding Nature Notor (a) (b) or equivalent figure
	Working of resistors split single phase induction motor:
	To make a single phase induction motor self-starting, we should somehow produce
	a rotating magnetic field. This may be achieved by converting a single-phase supply into
	two-phase supply through the use of an additional winding. In a split phase induction motor,
	the additional winding is known as auxiliary winding or starting winding.
	> Because of the high value of resistance in the starting winding, a phase shift of 30 to 40° is

SUMMER-2018 Examinations Subject Code: 17318 **Model Answer** Page 23 of 37 introduced in the current carried by starting and running windings. This creates rotating magnetic field and the motor starts running. A centrifugal switch S is connected in series with the starting winding \geq > It function is to automatically disconnected the starting winding from the supply when the motor has reached 70 to 80 per cent of its full load speed. **f**) Explain the working principle of AC servo motor and state any two applications. **Figure :** (Figure : 1 Mark & Principle : 2 Mark, Application: 1 Mark) Ans: supol 0000000 Reference winding 90° Rotor Control voltage form voamplifier Control winding or equivalent figure Principle of working of servo motor: There are some special types of application of electrical motor where rotation of the motor is required for just a certain angle not continuously for long period of time. For these

applications some special types of motor are required with some special arrangement which makes the motor to rotate a certain angle for a given electrical input (signal). Such motors can be ac or dc motors. When controlled by servo mechanisms are termed as servomotors.

These consist of main and control winding and squirrel cage / drag cup type rotors. Vr is the voltage applied to the main or reference winding while Vc is that applied to control winding which controls the torque- speed characteristics. The 90^{0} space displacement of the two coils/windings and the 90^{0} phase difference between the voltages applied to them result in production of rotating magnetic field in the air gap due to which the rotor is set in motion. The power signals can be fed from servo amplifiers either to the field or armature depending upon the required characteristics.

Ì

SUMMER–2018 Examinations				
	Subject Code: 17318	Model Answer	Page 24 of 37	
	 Application of AC Servomotor: 1. Robotics 2. Conveyor Belts 3. Camera Auto Focus 4. Robotic Vehicle 5. Solar Tracking System 6. Metal Cutting & Metal Forming 7. Antenna Positioning 8. Woodworking/CNC 9. Textiles 10. Printing Presses/Printers 11. Automatic Door Opener 	(Any Two Application g Machines	expected)	
Q.5	Attempt any FOUR of the following	: 16 Marks		
a)	An alternating current is given by i = (iii) Frequency (iv) Time period	10 sin 628 t. Calculate (i) Average v	value (ii) RMS value	
Ans:	Given data :			
	i = 10 sin 628ti			
	$I = I_m * \sin \omega * t$			
	Step-I:- Average value of current:			
	$I_{avg} = 0.639 * 10$		(1/2 Mark)	
	$I_{avg} = 6.39 Amp \cdot$		(1/2 Mark)	
	Step-II:- To find RMS value of Curr	rent:		
	$I_{rms} = 0.707 * I_m$		$(\frac{1}{2}Mark)$	
	$I_{rms} = 0.707 * 10 = 7.07$	Amp — — — — — — — — — — — — — — — — — — —	(1/2 Mark)	
	Step-III:- To find frequency:			
	$f = \frac{\omega}{2 * \pi} = \frac{628}{2 * \pi}$		(1/2Mark)	
	$f = 99.94 \ Hz$		(1/2Mark)	
	Step-III:- To find time Period			
	$T = \frac{1}{f}$		$-(\frac{1}{2}Mark)$	
	$T = \frac{1}{99.94}$			
	$T = 0.010 \ sec$		$(\frac{1}{2}Mark)$	

SUMMER-2018 Examinations

Subject Code: 17318 **Model Answer** Page 25 of 37 If a 3-Ph, 400 V, 50 HZ supply is connected to a balanced 3-Ph star connected load of impedance (3 + i6) ohm per phase, Calculate : (i) Phase Current (ii) Power Factor (iii) Total **b**) Active Power (iv) Phase Voltage Solution:-Ans: Star-connected Z=3+6j load VL=400v Z=3+6j Z=3+6i B or equivalent fig i) line voltage $V_L = 400$ Volt i) Phase current (I_{ph}); $I_{ph} = \frac{230.94}{3+6i} = \frac{230.94}{6.70 \pm 63.43}$ ii) Power factor. iii)Total Active Power: $P = 3 * V_{ph} * I_{ph} * \cos\theta$ ------(1/2 Mark) $P = 3 \times 230.94 \times 34.86 \times 0.44$ P = 10626 watt ------ (1/2 Mark)

SUMMER-2018 Examinations				
	Subject Code: 17318	<u>Model Answer</u>	Page 26 of 37	
	iv) Phase voltage V _{ph}			
	In Star connec	tion $V_{Ph} = \frac{V_L}{\sqrt{3}} $	(1/2 Mark)	
		$V_{ph} = rac{400}{\sqrt{3}}$		
	$V_{ph} = 230.9$	4	(1/2 Mark)	
c)	A 25 kVA, single pha secondary winding. Th Calculate: (i) Primary flux on the core.	ase transformer has 250 turns on the e primary is connected to 1500 V, 50 Hz and secondary currents on full load. (ii)	primary and 40 turns on the mains. Secondary emf. (iii) Maximum	
Ans:	$V_1 = 1500 V V_2 =? \Lambda$	$I_1 = 250$ $N_2 = 40$ $I_1 = ?$ $I_2 = ?$		
	i) To Find full load Pri	mary current I ₁ :-		
	1	$F_1 = \frac{KVA \times 10^3}{V_1 \ volt}$	(1/2 Mark)	
	1	$_{1} = \frac{25 * 10^{3}}{1500}$		
		$l_1 = 16.66 Amp$	- – – (1/2 Mark)	
		$\frac{V_2}{V_1} = \frac{N_2}{N_1} \text{ OR } \frac{V_1}{V_2} = \frac{N_1}{N_2}$		
		$V_2 = \frac{40}{250} * 1500$		
		$V_2 = 240 \text{ volt}$		
	To Find full load Seco	ndary I ₂ :		
	I_2	$=\frac{KVA\times10^3}{V_2 \ volt}$	(1/2Mark)	
	I ₂	$=\frac{25 * 10^3}{240}$		
		$I_2 = 104.16 \ Amp$	– – – (1/2 Mark)	

SUMMER-2018 Examinations			
	Subject Code: 17318Model AnswerPa	ge 27 of 37	
	iii) Maximum flux:		
	$E_1 = 4.44 \phi_m f N_1$ (1/2)	Mark)	
	$\phi_m = \frac{E_1}{4.44 \times f \times N_1}$		
	$\phi_m = \frac{1500}{4.44 * 50 * 250}$		
	$\phi_m = 0.0270Wb$	ļ	
	iv) Secondary emf		
	$E_2 = 4.44 \text{ f} \phi m N_2 = $	Aark)	
	$E_2 = 4.44 * 50 * 0.0270 * 40$		
	$E_2 = 239.76 Volt$	rk	
d)	State the necessity of starter in case of three phase induction motor and explain.		
Ans:	Necessity of the starter in 3 phase I.M : (4 M	ark)	
	At the time of starting, slip $s= 1$, so the rotor resistance which depends on slip		
	i.e. $R2(1-S)/S$ will be equal to "0",		
	i.e. rotor will act as short circuit.		
	Hence initially induction motor will draw heavy amount of current. Thus, a starter is needed.	eded in	
	order to limit the starting current.		
	After the motor has started at reduced starting current and hence reduced voltage, the con	nnections	
	are diverted towards the mains supply so that now, the motor can run at higher starting c	urrent and	
	voltage.		
e)	Explain any one method of speed control of single phase induction motor.		
Ans:	(List: 2 Marks & 2 Marks for any one method expla	nation)	
	Following methods to control the speed of 3 phase induction motor: (Explanation of	f any one	
	method is expected)		
	1) By Varying applied frequency (Frequency control)		
	2) By varying applied voltage (Stator voltage control)		
	3) By varying number of poles of the stator winding (Pole Changing)		

SUMMER-2018 Examinations

SUMMER- 2018 Examinations

Subject Code: 17318

Model Answer

Page 29 of 37

	SUM	MER– 2018 Examinations	
	Subject Code: 17318	Model Answer	Page 30 of 37
£)	 If the ratio of voltage to from the maximum torque which approximately constant. However at a low frequence impedance and the voltage This type of control is usual A simple circuit arrangement in the above figure. 	equency is kept constant, the flux remains conch is independent of frequency can be maintacy, the air gap flux is reduced due to drop in the has to be increased to maintain the torque le ally known as Volts/ Hertz or V/f control. ment for obtaining variable voltage and frequ	nstant. ined the stator evel. ency is as shown
I) Ans:	(iv) Split Phase Induction Motor.		
7 1115.	i) Application of Universal Motor :	(Any Two application expected : 1	l Mark each)
	1) Mixer 2) Food processor		
	3) Heavy duty machine tools		
	4) Grinder		
	5) Vacuum cleaners		
	6) Refrigerators		
	7) Driving sewing machines		
	8) Electric Shavers		
	9) Hair dryers		
	10) Small Fans		
	11) Cloth washing machine		
	12) portable tools like blowers, drill	ling machine, polishers etc	
	ii) Applications of stepper motor-	(Two application expec	ted-1 Mark)
	1.Suitable for use with compute	er controlled system	
	2. Widely used in numerical con	ntrol of machine tools.	
	3. Tape drives		
	4. Floppy disc drives		
	5. Computer printers		
	6. X-Y plotters		

Subject Code: 17318

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER– 2018 Examinations <u>Model Answer</u>

Page 31 of 37

	7. Robotics	
	8. Textile industries	
	9. Integrated circuit fabrication	
	10. Electric watches	
	11. In space craft's launched for scientific explo	prations of planets.
	12. In the production of science friction movies	3
	13 Automotive	
	14. Food processing	
	15. Packaging	
iii) Ap	oplications of servo motor :	(Any Two expected: 1 Mark each)
1.	Robotics	
2.	Conveyor Belts	
3.	Camera Auto Focus	
4.	Robotic Vehicle	
5.	Solar Tracking System	
6.	Metal Cutting & Metal Forming Machines	
7.	Antenna Positioning	
8.	Woodworking/CNC	
9.	Textiles	
10	. Printing Presses/Printers	
11	. Automatic Door Openers	
iii) Ap	oplications of Split Phase Induction Motor :	(Any Two expected: 1 Mark each)
1.	washing machine	
2.	Air conditioning fans.	
3.	Mixer grinder	
4. 5.	Blowers	
6.	Centrifugal pumps	
7.	Drilling and lathe machine.	

SUMMER- 2018 Examinations

Subject Code: 17318

Model Answer

Page 32 of 37

Q.6	Attempt any FOUR of the following : 16 Marks			
	Three impedances each of 3 ohm resistance and 5 ohm reactance in series are connected in			
a)	delta across 50 Hz, 440 V line voltage. Find,(i) Impedance (ii) Phase current (iii) Power factor			
Ans	(iv) Total power			
Alls.	RO			
	3+5i			
	3+5j			
	\succ \prec			
	vo—			
	3+5j			
	BO or equivalent fig			
	$X_L = 5 ohm$			
	i) Imnedance –			
	i) impedance –			
	Im pedance $Z = \sqrt{(R)^2 + (X_L)^2}$ (1/2 Mark)			
	Im pedance $Z = \sqrt{(3)^2 + (5)^2}$			
	Impedance Z = 5.83 Ω (1/2 Mark)			
	ii) Phase current :			
	In case of delta connection phase voltage is equal to line voltage			
	$V_{Fh} = V_{Line}$			
	V			
	phase current $I_{ph} = \frac{p_h}{z_{ph}} (\frac{1}{2}Mark)$			
	100 100			
	$I_{vh} = \frac{400}{2 + 5} = \frac{400}{5 + 22 + 5}$			
	²¹¹ 3 + 5/ 5.83269.03			
	phase current I _{ph} = 68.61∠ - 69.03 (¹ / ₂ Mark)			
	iii) Power factor.			
	$Power \ Factor = \cos \emptyset = \cos(-69.03)$			
	Power Factor = 0.51 $lagging (\frac{1}{2}Mark)$			

		SUMMER- 2018 Examinations	
	Subject Code: 17318	Model Answer	Page 33 of 37
	iv) Total Active Power:		
	P = 3 * 1	$V_{ph} * I_{ph} * \cos\theta$	(1/2 Mark)
	P = 3 * 4	400 * 68.61 * 0.51	
	P = 419	89.70 watt	· (1/2 Mark)
b)	A 50 kVA, 1-Ph transform	ner has a full load on loss of 4 kW an er at half and full load with a power fa	id iron loss of 2 kW. Find the
Ans:	Efficiency at half I and n	$\frac{1}{2 \times KVA \times Cos\phi}$	×100
	Efficiency at nan Load η_H	$\frac{1}{1/2 \times KVA \times Cos\phi + Iron losses + (1)}$	$(/2)^2$ copper losses (100)
		0 2 4 20 4 1	(1 Mark)
	711	$H^{l} = \frac{0.3 \times 30 \times 1}{0.5 \times 50 \times 1 - 2 - 1} \times 100$	
	η_1	_{Ml} = 89.28%	(1 Mark)
	Efficiency at Full I and n	$_$ KVA × Cos ϕ	~100 (1 Mark)
	Efficiency at Full Load η_{FL}	$KVA \times Cos\phi + Iron \ losses + \ coppe$	r losses
	t) i	${}_{H^{l}} = {{50 * 1} \over {50 * 1 - 4 - 2} } * 100$	
	1	$\eta_{Hl} = 89.28\%$	(1 Mark)
c)	A 20 kVA, 3300/240 V, 50 number of primary turns, flux in the core.	Hz, 1-Ph transformer has 80 turns on , full load primary and secondary cur	secondary winding. Calculate rents and maximum value of
Ans:	$V_1 = 3300 V V_2 = 240 V N_1$	$I_1 = ? N_2 = 80 I_1 = ? I_2 = ?$	
	i) To Find full load Primar	y current I ₁ :-	
	$I_1 = \frac{KVA \times V_1}{V_1 v t}$	$\frac{\langle 10^3}{olt}$ (1/2 Mark)
	$I_1 = \frac{20 \times 1}{3300}$	$\frac{10^3}{0}$	
	$I_1 = 6.060$	Amp	(1/2 Mark)

SUMMER- 2018 Examinations					
	Subject Code: 17318	Mod	el Answer	Page 34 of 37	
	ii) To Find full load Secondary I ₂ :				
		$I_2 = \frac{KVA \times 10^3}{V_2 \ volt} \dots$		(1/2Mark)	
		$I_2 = \frac{20 \times 10^3}{240}$			
		$I_2 = 83.33 Amp$		(1/2 Mark)	
	iii) Number of prin	nary winding turns N ₁	:		
		$\frac{V_2}{V_1} = \frac{N_2}{N_1} \text{ OR } \frac{V_1}{V_2} = \frac{N_2}{N_2}$	- ,		
		$N_1 = \frac{V_1}{V_2} \times N_2$		(1/2 Mark)	
		$N_1 = \frac{3300}{240} \times 80$			
		$N_1 = 1100 \ turns$		(1/2 Mark)	
	iv)mavimum valu	e of flux in the core			
	$E_1 = 4$	$.44\phi_m f N_1$		(1/2 Mark)	
	$\phi_m = -\frac{1}{2}$ $\phi_m = -\frac{1}{2}$	$\frac{E_1}{4.44 \times f \times N_1}$ $\frac{3300}{4.44 \times 50 \times 1100}$			
	$\phi_m =$	0.01351 <i>Wb</i>		(1/2 Mark)	
J)	Descharge				
Ans:	Schematic represe	representation and stand	(Figure : 2 Mark & 1	ervo motor. Principle : 2 Mark)	
	Control voltage form servoamplifier	A.C. supply	ference winding - Rotor		
		winding	or equivalent figu	re.	

Subject Code: 17318

SUMMER- 2018 Examinations Model Answer

Page 35 of 37

Principle of working of servo motor: There are some special types of application of electrical motor where rotation of the motor is required for just a certain angle not continuously for long period of time. For these applications some special types of motor are required with some special arrangement which makes the motor to rotate a certain angle for a given electrical input (signal). Such motors can be ac or dc motors. When controlled by servo mechanisms are termed as servomotors. These consist of main and control winding and squirrel cage / drag cup type rotors. Vr is the voltage applied to the main or reference winding while Vc is that applied to control winding which controls the torque- speed characteristics. The 90° space displacement of the two coils/windings and the 90° phase difference between the voltages applied to them result in production of rotating magnetic field in the air gap due to which the rotor is set in motion. The power signals can be fed from servo amplifiers either to the field or armature depending upon the required characteristics. Explain the principle of operation and reversal of rotation of universal motors. e) Figure of Universal motor: Ans: (Figure : 2 Marks & Explanation : 2 Marks) SALIENT POLES ARMATURE AC or DC SERIES FIELD COILS SERIES FIELD COILS Supply BRUSH OR **OR** Equivalent figure Working of universal motor: \geq A universal motor works on either DC or single phase AC supply. When the universal motor is fed with a DC supply, it works as a DC series motor. When current flows in the field winding, it produces an electromagnetic field. The same current also flows from the armature conductors. When a current carrying conductor is placed in an electromagnetic field, it experiences a mechanical force. Due to this mechanical force, or torque, the rotor starts torotate. The direction of this force is given by Fleming's left hand rule.

	Subject Code: 17318SUMMER- 2018 ExaminationsModel Answer	Page 36 of 37		
	When fed with AC supply, it still produces unidirectional torque. Because, arr	mature winding		
	and field winding are connected in series, they are in same phase. Hence, as p	olarity of AC		
	changes periodically, the direction of current in armature and field winding reverses at the sa			
	time. Thus, direction of magnetic field and the direction of armature current reverses in such a			
	way that the direction of force experienced by armature conductors remains sa	ame. Thus,		
	regardless of AC or DC supply, universal motor works on the same principle	that DC series		
	motor works.			
	Reversal of rotation of universal motors:-			
	The direction of rotation of a universal motor can be changed by either:	(i) Reversing the		
	field connection with respect to those of armature; or (ii) By using two field w	indings wound on		
	the core in opposite directions so that the one connected in series with armatur	e gives clockwise		
	rotation, while the other in series with the armature gives counterclockwise rot	tation.		
f)) State the use of megger. Draw its front panel diagram and different control te	rminals.		
Ans:	: Uses of megger	(2 Mark)		
	1. For measurement of insulation resistance of cables			
	2. For installation resistance testing			
	3. Testing of electrical machines			
	4. Electrical leakage in wire			
	5. Measurement of earth resistances.			
	6. Insulation resistance values and other high resistances			
	Front panel diagram and different control terminals Megger: (Di	agram : 2 Mark)		
	Diginal Display Wire Leads Gibbo Control Control Control Control Control			

Subject Code: 17318

SUMMER- 2018 Examinations Model Answer

Page 37 of 37

-----END-----