

Subject Code: 17524

Model Answer

Page 1 of 28

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A)	Attempt any FIVE of the following :	20 Marks
a)	Define the following terms related to AC quantity :	
	(i) Instantaneous value (ii) RMS value (iii) Time period (iv) Frequency	
Ans	i) Instantaneous value <u>:</u>	(1 Mark)
	The instantaneous value is "the value of an alternating quantity (it may	ac voltage or ac
	current or ac power) at a particular instant of time in the cycle". OR	
	The value of alternating quantity (emf, voltage or current) at any particu	lar instant is called
	the instantaneous value.	
	ii) RMS value:	(1 Mark)
	The r.m.s value of an alternating current is that steady current (d.c) we through a given resistance for a given time produces the same amount by the alternating current when flowing through the same resistance for the	which when flowing of heat as produced the same time. OR
	∴ RMS Value = Form Factor × Average Value OR	
	RMS Value = $0.707 \times \text{maximum value}$	
	iii) Time period:	(1 Mark)
	The time (in sec) required by an alternating quantity to complete i	ts one cycle is
	known as time period.	
	iv) Frequency :	(1 Mark)
	The total number of cycles per second. (Hertz)	

Subject Code: 17524

Model Answer

Page 2 of 28

b)	Compare c	onductor and insulator for two points	•
Ans	Compare	between conductor and insulator:	(Any Two expected: 2 Mark each)
			• • •
	S.No	Conductor	Insulator
		The conductivity of conductor is	The conductivity of insulator is very
		very high.	low.
	2	It has very low resistivity.	It has very high resistivity.
	4	Conductor has positive temperature	Insulator has negative temperature
		coefficient of resistance.	coefficient of resistance.
	3	There is large number of free	There is small number of electrons
		electrons available for conduction.	available for conduction.
	4	Low electronegativity	High electronegativity
	5	Valence electrons are less than 4	Valence electrons are more than 4
	6	Examples: Aluminum, copper.	Examples: Paper, Mica glass,
		Silver ,gold.	Rubber.
	7		Resistance of ideal insulator is
		Resistance of ideal conductor is zero	infinite.
	a		
c)	State the si	gnificance of colour code in automobil	le electric wiring.
Alls	Importance	e of colour counig in automobile with	ig: (4 Mark)
	Aut	omobile wiring is complicated because	of number of lamps and accessories for
	this colo	or coding is necessary due to which wiri	ng can easily identify for specific lamp and
	accessor	ries and also it is easier during maintena	ince.
		0	R
	With	n the help of color codes of electrical wi	ires, they can be easily and safely
	identifie	ed.	
	The	re are some safety measurements that ar	e to be followed while dealing with
	electrica	al wiring and the color codes of wires w	ill help in implementing those safety
	measure	ements.	
	colo	but could is provided with the automot	one witting narnesses for fault diagnosis and
	The	colour coding will identifies the part of	f circuit formed by this cable
(P	Draw the s	vmbols of (i) LDR (ii) Multicell - Ratt	erv (iii) Dual filament hulh (iv) Sneaker

SUMMER-2018 Examinations

		SUMMER-2018 Ex	aminations	
Subje	ect Code: 17524	<u>Model Answ</u>	<u>'er</u>	Page 5 of 28
	 In resistors split p resistance but hig low reactance. Th magnetic filed ca The resistance of 	bhase I.M shown in abo th reactance whereas the phase difference bet using rotor to rotate. the starting winding m	ve figure 'a', the n le starting winding ween current in bot ay be increased eit	hain winding has low has a high resistance, but th windings causes rotating her by connecting a high
	 A centrifugal swi inside the motor 	tch S is connected in se	eries with the starti	ng winding and is located
	 It function is to a the motor has rea 	utomatically disconnec ched 70 to 80 per cent	ted the starting wir of its full load spee	iding from the supply when ed.
	Applications of resista	nce Split Phase Induc	tion Motor : (Any Two expec	ted: 1/2 Mark each)
	 washing machine Air conditioning Mixer grinder floor polishers. Blowers Centrifugal pum Drilling and lath 	e fans. ps e machine.		
b)	Describe the working p	principle of shaded po	le motor.	
Ans:	i) Shaded Pole Induct	tion Motor :	(Figure-2 Mark &	Explanation: 2 Mark)
	C.		Resultant flux (c)	Resultant flux (d)

SUMMER-2018 Examinations Model Answer

Page 6 of 28

	OR Construction & Working:- When single phase supply is applied across the stator winding an alternating field is created. The flux distribution is non uniform due to shading coils on the poles.
	Now consider three different instants of time t_1 , t_2 , t_3 of the flux wave to examine
	the effect of shading coil as shown in the fig above. The magnetic neutral axis shifts from
	left to right in every half cycle, from non shaded area of pole to the shaded area of the pole.
	This gives to some extent a rotating field effect which may be sufficient to provide starting
	torque to squirrel cage rotor.
c)	Describe the harness of wiring and cable connector with diagram.
Ans:	i) Function of wiring harness: (Figure: 1 Mark & Function: 1 Mark)
	Clob Car Precedent Cas Hamess Wining Digram Image: Clob Car Precedent Coor Ker Image: Clob Ke
	Automobile wiring is complicated and critical to setup, with the help of harness time
	required for completion of wiring is less it easy to replace and maintain other accessories

SUMMER-2018 Examinations Subject Code: 17524 **Model Answer** Page 7 of 28 like audio, video or mobile can be setup inside the vehicle, with proper instructions it can be easily installed and replace safely. **Cable connectors:** (Figure: 1 Mark & Function: 1 Mark) RS-232 (DB-25) Function of cable connector: The part of a cable that plugs into a port or interface to connect one device to another. Most connectors are either male or female types. Describe self inductance and mutual inductance. **d**) i) Self induced emf : (2 Mark) Ans: Self-induced emf is the e.m.f induced in the coil due to the change of flux produced by linking it with its own turns. This phenomenon of self-induced emf $e \alpha \frac{dI}{dt} or e = L \frac{dI}{dt} OR$ In the Statically induced emf flux linked with coil or winding changes $(d\Phi/dt)$ and coil or winding is stationary such induced emf is called Statically induced emf $E = -N (d\Phi/dt)$ ii) Mutually induced emf : (**2 Mark**) The emf induced in a coil due to the change of flux produced by another neighboring coil linking to it, is called Mutually Induced emf. $e_m \alpha \frac{dI_1}{dt} or e = M \frac{dI_1}{dt}$

Subje	ect Code: 17524 <u>Model Answer</u>	Page 8 of 28
e)	Draw a'neat labelled diagram of RTD and explain it's operating pr	inciple.
Ans:	Diagram of RTD operating principle: (Diagram: 2 Mark & I	Principle : 2 Marks)
	RTD Lead resistance R3	Vin
	RTD is temperature dependent resistance i.e. a resistiv	e sensing element with
	positive temp coefficient. The resistance is increased with in	crease in temperature.
	Platinum is the preferred material. The nominal resistance at room	temperature is 100ohm
	with highly linear and repeatable characteristics of temperature to	resistance makes it an
	ideal choice for temperature measurement in the range of -200 to 5	500 [°] C RTDs are always
	connected in wheatstone bridge circuit with 2/3 wire configurat	ion to produce voltage
	signal in response to temperature.	
f)	State Fleming's Right hand and Left hand rule	
Ans:	1) Fleming's Right Hand Rule:	(2 Mark)
	Arrange three fingers of right hand mutually perpendicular to figure indicates the direction of flux, thumb indicates the direct conductor, and then the middle finger will point out the direction of	each other, if the first etion of motion of the induced current.
	Use: Generator. current & EMF	
	2) Left hand rules:	(2 Mark)
	According to Fleming's left hand rule if we stretch the thum	o, the center finger and
	the middle finger of our left hand such that they are mutually perpen	dicular to each other. If
	the center finger gives the direction of current and middle finger	points in the direction
	of magnetic field then the thumb points towards the direction of the	force or motion of the
	conductor.	
	Use: Electric Motor	

Subject Code: 17524

Model Answer

Page 9 of 28

Q.3	Attempt any FOUR of the following : 16 Marks
9)	Draw the symbolic representation of SCR and define (i) Holding current (ii) Breakdown
a)	voltage (iii) Forward current rating State Fleming's Right hand and Left hand rule.
Ans:	(Symbol-1Mark & Each meaning: 1 Mark) Symbolic representation of SCR
	Anode Cathode Gate
	 Holding current : It is the minimum anode current required to maintain SCR in the on state. Breakdown voltage : The voltage at which breakdown of reverse biased junction occurs and gurrent increases upcontrollably.
	(3) Forward current rating : The maximum value of anode current, that an SCR can handle safely without any damage, is called the forward current rating.
b)	Draw the circuit diagram of Bridge full wave rectifier and explain it's operation.
Ans:	(Circuit Diagram – 1 Mark, Working – 2 Marks, waveform – 1 Mark)
	Bridge type full wave rectifier:
	$\begin{bmatrix} D4 \\ A \\ D1 \\ C \\ D2 \\ B \\ C \\ C$
	Working:-
	The Bridge rectifier consists of a step down transformer, a rectifier circuit with four diodes and a load resistance RL.
	 The 230 V ac input from mains is stepped down (reduced) using the step transformer. The reduced ac i.e. output of the secondary of the transformer is applied to the bridge circuit. The bridge consists of four diodes D1,D2,D3&D4, which offers full wave rectification. The diodes conduct in pair. During +ve half cycle of the ac input, point A is +ve& point B is -ve. Therefore diode
	 D1 & D2 are forward biased and D3 & D4 are reverse biased. Therefore only D1 and D2 conduct and the current flows along the path "A-D1-RL-D2-B". > During -ve half cycle of the ac input, point B is +ve& point A is -ve. D3 and D4 conduct while D1 & D2 remain reverse biased(off). Therefore the current follows

SUMMER-2018 Examinations

Page 11 of 28

Subject Code: 17524

Model Answer

Working-

The secondary S1 and S2 are connected in series opposition so that voltages induced in each coil oppose each other. The electrical equivalent connection is shown below.

The position of movable core determines the flux linkage between the primary and each of the secondary windings.

Let V1= output of secondary S1

V2= output of secondary S2

Then $V_0 = V1 - V2$

Case 1: when the core is at centre.

With the core in the centre, the induced voltages V1 and V2 in the secondary S1 and S2 are equal, since they oppose each other; the output will be zero volts.

Case 2: when core is displaced.

When the core is displaced from the null position, the induced voltage in the secondary towards witch the core has moved increases while that in other secondary decreases.

The phase difference between the output and input voltage changes by 180 degrees when the core moves through the null position. Therefore in actual measurement to determine positions uniquely, this phase change over is measured with phase sensitive detector.

SUMMER-2018 Examinations

Model Answer

Page 12 of 28

d)	Draw and describe the VI characteristic of P-N junction.
Ans:	(2 Mark for working , 2 Marks characteristics)
	Construction of PN junction diode: -
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	or equivalent light
	A P-N junction is formed at the boundary between a p-type and n-type semiconductor created in a single crystal of semiconductor by doping.
	Working-
	In forward bias, the p-type is connected with the positive terminal and the n- type is connected with the negative terminal. With a battery connected this way, the holes in the P-type region and the electrons in the N-type region are pushed toward the junction. This reduces the width of the depletion zone. The positive charge applied to the P-type material repels the holes, while the negative charge applied to the N-type material repels the electrons. As electrons and holes are pushed toward the junction, the distance between them decreases. This lowers the barrier in potential. With increasing forward- bias voltage, the depletion zone eventually becomes thin enough that the zone's electric field cannot counteract charge carrier motion across the p–n junction, as a consequence reducing electrical resistance. The electrons that cross the p–n junction into the P-type material (or holes that cross into the N-type material) will diffuse in the near-neutral region. Therefore, the amount of minority diffusion in the near-neutral zones determines the amount of current that may flow through the diode.
	Reverse-bias usually refers to how a diode is used in a circuit. If a diode is reverse-biased, the voltage at the cathode is higher than that at the anode. Therefore, no current will flow until the diode breaks down. Connecting the P-type region to the negative terminal of the battery and the N-type region to the positive terminal corresponds to reverse bias. Because the p-type material is now connected to the negative terminal of the power supply, the 'holes' in the P-type material are pulled away from the junction, causing the width of the depletion zone to increase. Likewise, because the N-type region is connected to the positive terminal, the electrons will also be pulled away from the junction. Therefore, the depletion region widens, and does so increasingly with increasing reverse-bias voltage. This increases the voltage barrier causing a high resistance to the flow of charge carriers, thus allowing minimal electric current to cross the p-n junction. The increase in resistance of the p-n junction results in the junction behaving as an insulator.

SUMMER-2018 Examinations

SUMMER-2018 Examinations Model Answer

Page 14 of 28

Subject Code: 17524

Model Answer

Page 15 of 28

Q.4	Attempt any FOUR of the following : 16 Marks
a)	Draw a neat diagram of ultrasonic flowmeter and describe it's working.
Ans:	(Diagram- 2 Marks & Working Principle-2 Marks)
	Vltrasonic flow meter Schematic diagram:-
	There are two types based on -1) Doppler effect 2) Transit time.
	Flow Flow Flow Flow Flow Flow Flow Flow
	Warking Ultragonia flow motor based on Donnlar effect is evaluated here
	working- Ultrasonic flow meter based on Doppler effect is explained here.
	A and B are piezo-electric devices transmitting the short duration ultrasonic signals
	through the fluid that is flowing through the pipe at a velocity v. Similar type of crystals are
	used as receivers to respond to pressure fluctuations.
	Due to the fluid velocity v aiding the transmission, the velocity of ultrasonic signal
	from the transmitter-A to receiver-A is increased to a value c + v cos $\theta,$ where c is the
	velocity of sound through the fluid in the pipe and θ is the angle between the path of sound
	and the pipe valve. The repetition frequency of the received pulse f_A will be
	$f_A = \frac{c + v \cos \phi}{l}$
	Where l= the distance between the transmitter and receiver.
	On the other hand, the velocity of the ultrasonic signal transmitted by transmitter B and received by received B will be reduced by the fluid velocity causing a retardation of $v \cos \theta$ and its pulse repetition frequency f_B will be
	$f_B = \frac{c - v \cos\phi}{l}$
	The difference between frequencies is given by
	$\Delta f = f_A - f_B = \frac{2\nu\cos\phi}{l}$
	By measuring the difference in the repetition frequency Δf and knowing the values of θ and l, the velocity of the fluid can be computed alternatively, the flow velocity can be computed by measuring the transit time difference between the two pulse trains in either direction.

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2018 Examinations Model Answer

Page 16 of 28

SUMMER-2018 Examinations

a positively charged electron hole).

	SUMMER-2018 Examinations	_
Subje	ect Code: 17524 <u>Model Answer</u>	Page 18 of 28
	When a reverse biased P-N junction is illuminated, the current	flowing through it
	varies almost linearly with light flux. The output voltage is taken fro	om across a series-
	connected load resistor R as shown in above figure.	
	Applications of photodiode:	
	1. Photo diodes are used in consumer electronics devices such as c	compact
	disc players, smoke detectors	
	2. The receivers for infrared remote control devices used to control	rol equipment from
	televisions to air conditioners.	
	3. Light measurement, as in camera light meters, or to respond to	b light levels, as in
	switching on street lighting after dark.	
e)	Define transformation ratio, turns ratio for single phase transformer.	
	It is the ratio of secondary number of turns to primary number the ratio of secondary voltage to primary voltage. OR It is the ratio of p secondary current. OR	of turns. OR It is orimary current to
	Transformation ratio $(k) = \frac{N_2}{N_1}$ or $= \frac{E_2}{E_1}$ or $= \frac{V_2}{V_1}$ or $= \frac{I_1}{I_2}$	
	ii) Turns ratio:	-(2 Marks)
	Turns Ratio of a transformer is defined as the ratio of the number of turn to the number of turns in the Secondary. $Turns \ ratio = \frac{N_1}{N_2}$	ns in the Primary
f)	Describe the concept of stepper motor.	
Ans:	Stepper motors are DC motors that move in discrete steps. They have a	multiple coils that
	are organized in groups called "phases". By energizing each phase in s	equence, the
	motor will rotate, one step at a time.	
	Types of Stepper Motor :-	(1 Marks)
	1) Variable Reluctance Motor	
	2) Permanent Magnet Motor	
	1) Variable Reluctance Motors:- (Any one types of Explana)	ation - 2 Mark)

SUMMER-2018 Examinations Model Answer

Page 19 of 28

SUMMER-2018 Examinations

Subje	ect Code: 17524	Model Ans	swer	Page 20 of 28
	 7. Robotics 8. Textile indus 9. Integrated ciri 10. Electric wat 11. In space crai 12. In the prodution 13 Automotive 14. Food procest 15. Packaging 	tries reuit fabrication ches ft's launched for scien action of science friction ssing	tific explorations of planets. on movies	
Q.5	Attempt any FOUR of	the following :		16 Marks
a)	State the working prin	nciple of pirani vacuu	um gauge with a labelled d	iagram.
Ans:	Principle of pirani vac	cuum gauge :	(Principal: 2 Marks & I	Diagram: 2 Marks)
	The Pirar tube which is conn usually made eithe o-ring. The filamen pressure reading m electric current flor its molecules collid the vacuum pumps conductivity of the Measuring the heat	i gauge consists of a net of the system with the system. A conduct with the size and results of molect surrounding media with the system with	metal filament (usually platin hose vacuum is to be measur int or a flanged metal connec- lectrical circuit from which, cting wire (platinum filamen re suspended in a gas will lo emove heat. As the gas press cules present will fall propor vill fall and the wire will lose dication of pressure.	num) suspended in a red. Connection is ctor, sealed with an after calibration, a at) gets heated when use heat to the gas as sure is reduced (by rtionately, the e heat more slowly.
	Piran Applied pressure (Unknown) vacuum Filament (platinum) Measuring cell (Pirani gauge Chamber) To re	Gauge	Pirani Gauge	2. Rs

Subject Code: 17524

Model Answer

Page 21 of 28

b)	State the difference between	thermistor & RTD on f	our points.	
Ans:			(Any four points 4 Ma	arks)
	Criteria	RTD	Thermistor	
	Temperature range	-250°C to +750°C	-100°C to +500°C	-
	Accuracy	Best	Depends on calibration	-
	Linearity	Good	Worst	-
	Sensitivity	Less	Best	-
	Circuitry	Complex	Depends on accuracy/power requirements	-
	Charactesristics			
		TEMPERATURE	TEMPERATURE	
c)	Define the following terms : ((i) Intrinsic semiconduc	tor (ii) Extrinsic semicond	uctor
Ans:	a) Intrinsic semiconductor-		(2 Mark)
	The semiconductor wh	ich is in purest form like	Si, Ge (without trivalent or	pentavalent
	impurities/ doping) is call	ed "Intrinsic semiconduc	tor."	
	b) Extrinsic semiconductor	r-	((2 Mark)
	The semiconductor	which is having doping o	f trivalent materials (Boro	on,
	Aluminium) or pentaval	ent materials (Phosphor	rus, Arsenic) is called "Ext	trinsic
	semiconductor."			
d)	What are positive and negati	ve return system in wir	ing system ? Compare the	m.
Ans:	Positive return system:		(2 N	Marks)
	1. Tends to generate excess	ive system gain, noise, na	arrows bandwidth, and can c	cause
	oscillation.			
	2. Creates instability and tend	ds to drive a system into i	ts nonlinear region of opera	tion.

SUMMER-2018 Examinations Subject Code: 17524 **Model Answer** Page 22 of 28 3. Whereas negative feedback reduces system gain and increases bandwidth. Positive feedback increases system gain, narrows bandwidth, and becomes unstable. However, a system operating with positive feedback that hasn't gone into complete instability (oscillation), can be a very sensitive device with very high-gain amplifiers and sharp selectivity--super-regenerative radio receiver is a good example Negative return system: ------ (2 Marks) 1. Tends to opposite excessive change (large amplitude) and wants to hold a system within a limited operating range. 2. In the case of an amplifier, it tends to reduce circuit gain and increase device operating bandwidth. 3. Tends to create system stability by ensuring linear operation. OR (4 Marks) In positive return systems, negative terminal of battery is connected to different units of automobile and positive is earthed. In negative return system, positive is supplied to units and negative is earthed. Load Load Negative connected Positive connected 69 69 to earth to earth Batter Battery Negative earth Vehicle frame Positive earth Vehicle frame : Positive and negative earth systems

Subje	ect Code: 175	24 <u>Model Answe</u>	er Page	e 23 of 28
e)	State Ohm's	s law. Compare series and parallel circu	iits for two points.	
Ans:	Ohms Law	/:	(State-1 Mark & Equation-1 Ma	ırk)
	differ resista Equatio or	The current flowing through a so ence of potential across the co ance provided the temperature remain n:- i.e I $\alpha V \therefore \frac{V}{I} const\therefore V = I.R. or R = \frac{V}{I}$	blid conductor is directly proportion onductor. & inversely proportions constant. $\tan t \therefore I = \frac{V}{R}$	tional to onal to
	Comparis	Where R is constant called as resistant confor series and parallel circuits: (ance, V=voltage and I = Current Any Two point expected: 1 Mark each	nch)
	S.No.	Series circuits	Parallel circuits	
	1	Only ONE path for current to flow in a closed circuit	Number of path for current to flow circuit	in a closed
	2	Current remains the SAME in all parts of the circuit	Current is DIFFERENT throu branch of the circuit	igh each
	3	Voltage is DIFFERENT across each component	Voltage remains the same across each component of the circuit	
	4	Total power supplied is the sum of powers consumed in each circuit components like: P_Total=P_1+P_2+	Total power supplied is the su of powers consumed in each circuit components like: P_Total=P_1+P_2+	IM
f)	Describe the	e working of DC motor.		
Ans:	Working F	Principle of D.C Motor :-		(4 Mark
	It wo	orks on Faradays law of electromagne a magnetic field, mechanical force is	tic induction -If a current carrying s experienced on the conductor, th	conducto e directioi
	of which is	given by Fleming's left-hand rule (a	lso called motor rule) and hence the	e conduct
	moves in th	ne direction of force.		

Subject Code: 17524

Model Answer

Page 24 of 28

0.4	
Q.6	Attempt any FOUR of the following : 16 Marks
a)	Draw a neat sketch of elementary alternator and name the parts. Explain it's working
,	principle.
Ans:	Diagram: (1 Marks)
	a B B C Sync. \oplus Mach. C C C C C C C C C C C C C
	Construction of three phase alternator: (1 Marks)
	Construction wise, an alternator generally consists of field poles placed on the rotating fixture of the machine i.e. rotor as shown in the figure above. In most practical construction of alternator, it is installed with a stationary armature winding. There are mainly two types of rotor used in construction of alternator, 1. Salient pole type. 2. Ordinational extent type.
	The working principle of alternator : (2 Marks)
	Principle of alternator depends upon <u>Faraday's law of electromagnetic induction</u> . When the field winding gets excited field current flows through the field winding which produces magnetic flux in the air gap. As the prime mover rotates, the field winding also rotates and hence the magnetic flux also rotates.
	This rotating magnetic field is cut by the stationary armature conductors. So according to <u>Faraday's law of electromagnetic induction</u> , an EMF is induced in the armature conductors.
b)	Define the following terms — accuracy, precision, sensitivity and reliability.
Ans:	i) Accuracy – (1 Mark)
	It is defined as the difference between the true value and the measured value.
	OR
	It is the closeness with which an instrument reading approaches the true value of
	the quantity being measured.
	OR

SUMMER-2018 Examinations Subject Code: 17524 **Model Answer** Page 25 of 28 The degree of exactness of a measurement compared to the expected value. ii) Precision: (1 Mark) describes the reproducibility of the measurement. OR It is a measure of the reproducibility of the measurements that is given a fixed value of a quantity, precision of measure of the degree of agreement within a group of measurements. OR A measure of the consistency of measurements, i.e successive readings do not defer. iii) Sensitivity: (1 Mark) Is an absolute quantity, the smallest absolute amount of change that can be detected by a measurement. **OR** Sensitivity is the ratio of change in output of an instrument to the change in input. (iv) Reliability: (1 Mark) Reliability is a way of ensuring that any instrument used for measuring experimental variables gives the same results every time. **OR Instrument Reliability** is defined as the extent to which an instrument *consistently* measures what it is supposed to. Compare PNP & NPN transistor for following points : (i) symbol (ii) construction c) (Symbol 2 Marks construction 2 Marks) Ans: NPN transistor **PNP** transistor Sr.No. **Parameter** 1 Symbol PNP NPN Emitter Base Collector 2 Construction n р n Emitte

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2018 Examinations Model Answer

Page 26 of 28

----- END-----