SUMMER-18 EXAMINATION

Model Answer

Subject Code: 17525

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer 1) scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	
Ν	Q.N		Scheme
1	Α	Attempt any THREE	12
	a)	Explain Ergonomics aspects of machine design.	04
	Ans.	 Ergonomic aspects of machine design: The word 'ergonomics' is coined from two Greek words ergon = work and nomos = natural laws. Ergonomics means the natural laws of work. Anthropometry, Physiology and psychology are the components of ergonomics. Anthropometry: With the help of anthropometry dimensions of the components are finalized so that they can be easily handled by operator without fatigue and with consistence efficiency for e.g. diameter of steering wheel, distance from chair to pedals. Physiology: With the help of physiology components are designed to be operated by hand or foot force. For e.g. Gear shifting, Steering wheel are designed to be operated by hand because they require speed and accuracy which is imparted by hand and brake pedal clutch pedal etc. are designed to be operated by foot force because they require great amount of force is require than accuracy. Psychology: Psychology affects mode of operation for e.g. size, colour and push operation of emergency stops button of any machine. The size of emergency control is made large and painted in red so that they can be easily identified and always they are push operated. All these components make design of automobile components user friendly. 	04
	b)	List the stresses induced in cotter with the stress equation. Also write any two applications of the joint.	04
		The stresses induced in cotter with the stress equation: Emperical Relation $t = 0.31 \times d$ Cotter in double shear stress: $P = 2 \times b \times t \times \sigma_t$	02
		Cotter in Crushing : $P = (d2Xt)\sigma_c$	

	Bending failure:	
	$\sigma_{\rm h} = \frac{{\rm P} \times \left[{\rm d}_4 + 0.5 {\rm d}_2 \right]}{2}$	
	2tb ²	
	$h = \sqrt{\frac{3P}{d_2} + \frac{d_4 - d_2}{d_4 - d_2}}$	
	$b = \sqrt{\frac{t \times \sigma_b}{t \times \sigma_b}} \begin{bmatrix} 4 & -6 \end{bmatrix}$	
	Applications of Cotter joint:	
	1. Connecting a piston rod to cross head of steam engine	02
	2. Joining a tail rod with piston rod of an air pump	
	3. Valve rod and its stem.	
c)	Describe the concept of "Bolts of uniform strength".	04
Ans.	Bolts of uniform strength:	
	D D -	
	D_{c} D_{c} D_{o} D_{c}	
	- Snank	
	(a) (b) (c)	
	When a bolt is subjected to shock loading, as in case of cylinder head bolt of an I.C. engine,	
	the resilience of bolt should be considered in order to prevent breakage at the threads.	
	In order to make the bolt of uniform strength, the shank of the bolt is reduced in diameter. the	
	shank diameter can be reduced in following two manners:	
	1. If the shank of the bolt is turned down to a diameter equal or even slightly less than the	
	core diameter of the thread (Dc) as shown in Fig. (b) then shank of the bolt will undergo a	
	higher stress. This means that a shark will absorb a large portion of the energy thus	
	reliaving the meterial at the sections near the thread. The holt in this way becomes	04
	stronger and lighter and it increases the sheek absorbing constituted the balt because of an	
	stronger and fighter and it increases the shock absorbing capacity of the bolt because of an	
	histerased modulus of residence. This gives us bolts of uniform strength. The residence of a	
	bolt may also be increased by increasing its length.	
	2. A second alternative method of obtaining the bolts of uniform strength is shown in Fig. (c).	
	In this method, an axial hole is drilled through the head as far as the thread portion such	
	that the area of the shank becomes equal to the root area of the thread.	
	Let D = Diameter of the hole.	
	$D_o = $ Outer diameter of the thread, and	
	D_c = Root or core diameter of the thread.	
	$\therefore \qquad \frac{\pi}{4}D^2 = \frac{\pi}{4}\left[(D_o)^2 - (D_c)^2\right]$	
	$D^2 = (D_o)^2 - (D_c)^2$	
	$\therefore \qquad D = \sqrt{(D_c)^2 - (D_c)^2}$	

	d)	Design the rectangular key for a shaft of 50 mm diameter. The available shear and crushing stresses for key material are 42 MPa and 70 MPa respectively.			
	Ans.	$\sigma_{sk} = 42 \text{ N/mm}^2$ $\sigma_{ck} = 70 \text{ N/mm}^2$			
		i) Width and thickness for rectangular key:			
		$\therefore \mathbf{w} = \frac{\mathbf{d}}{4} = \frac{50}{4} = 12.5 \cong \mathbf{13mm}$			
		$\therefore \mathbf{t} = \frac{\mathbf{d}}{6} = \frac{50}{6} = 8.33 \cong \mathbf{9mm}$	01		
		ii) Torque transmitted by key:			
		$T=\frac{\pi}{16} \sigma_s d^3$			
		Assume, σ_s for shaft= 42 N/mm ²			
		$T = \frac{\pi}{16} \times 42 \times 50^3$	01		
		$\therefore T = 10.308 \times 10^5 Nmm$			
		iii) Length of key by considering failure in shear:			
		$T = l \times w \times \sigma_{sk} \times \frac{d}{2}$			
		$10.308 \times 10^5 = l \times 13 \times 42 \times \frac{50}{2}$			
		$\therefore l = 75.51mm$			
		$\therefore l \cong 76mm$			
		iv) Length of key by considering failure in crushing:			
		$T = l imes rac{t}{2} imes \sigma_{ck} imes rac{d}{2}$			
		$10.308 \times 10^5 = l \times \frac{9}{2} \times 70 \times \frac{50}{2}$			
		$\therefore l = 130.79mm$			
		$\therefore l \cong 131mm$			
		Take maximum value of length of key for safe design $\therefore l \cong 131mm$ Attempt one \land			
1	В	Attempt any one	06		
	a)	Draw a neat sketch of turn buckle joint. Design the turn buckle tie rod diameter only to withstand a load of 2000N. Permissible stresses are $\varepsilon_t = 70 \text{ N/mm}^2$, $\tau_s = 60 \text{ N/mm}^2$.	06		
	Ans.	Coupler nut Coupler			
		$\rightarrow \frac{a}{2}$			
		$ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ \end{array} \\ } \\	03		
		- Rod (L.H. Threaded) Rod (R.H. Threaded)			
		Figure. Turn buckle joint			

	Let			
	D = diameter of rod			
	Dc =core diameter of rod			
	D = diameter of coupler nut			
	D1 = inside diameter of coupler at centre			
	L = Length of screw			
	L = length of counter			
	11 = length of threaded portion in each rod			
	$\sigma_{\rm f}$, $\sigma_{\rm c} \& \tau$ are permissible tensile, crushing and shear stresses.			
	P=2000 N			
	Permissible tensile Stress= 70 N/mm ²			
	Permissible Shear Stress= 60 N/mm ²			
	Design Load $P_d = 1.3 P = 1.3 X 2000 = 2600 N$			
	Now Design of Tie Rod:	01		
	$P_d = \left(\frac{\pi}{c} dc^2 \times \sigma_t\right)$	VI		
	$2600 = (\frac{\pi}{4}dc^2 \times 70)$			
	d _c =6.87 mm			
	$AS d_c=0.84 d_o$	01		
	d=6.87/0.84= 8.77 = 9 mm	VI		
1)				
D)	Write the stepwise design procedure for the design of protective type flange coupling.	06		
Ans.	The stepwise design procedure for the design of protective type flange coupling:			
	In a protected type flange coupling, the protruding bolts and nuts are protected by flanges on			
	the two halves of the coupling, in order to avoid danger to the workman.			
	+ 1 + 1+1+1+1+1+			
	Flange			
	d1			
	T Hub T			
	Key Shaft			
	T F			
	1.5d	01		
	D=2d	01		
	ShaftShaft D = 3d			
	<u>8</u> -+-₽			
	1.1.8-1-81			
	← L = 1.5d → - L = 1.5d →			
	Figure - Protective type flange coupling			

	Design Procedure of flange coupling	01
	Consider a flange coupling as shown in figure.	
	Let, $d = Diameter of shaft or inner diameter of hub$	
	D = Outer diameter of hub D = 2d	
	d_1 = Nominal or outside diameter of bolt	
	D_1 = Pitch circle diameter of bolts, D_1 = 3d	
	Length of the hub, $L=1.5d$	
	Outside diameter of flange, $D_2 = D_1 + (D_1 - D)$	01
	$D_2 = 2D_1 - D = 4d$	
	Thickness of flange, $t_f=0.5d$	
	Number of bolts = 3 for d up to 40 mm	01
	= 4, for d up to 100 mm	
	= 6, for d up to 180 mm	
	t_p = Thickness of protective circumferential flange = 0.25d	01
	N= Number of bolts	
	$t_f = Thickness of flange$	
	τ_s = Allowable shear stress for shaft	
	τ_b = Allowable shear stress for bolt	
	τ_k = Allowable shear stress for key	
	τ_c = Allowable shear stress for flange material i.e. cast iron	
	σ_{cb} = Allowable crushing stress for bolt	
	σ_{ck} = Allowable crushing stress for key	
	1 Design of Shaft	01
	The Shaft is designed on the basis of torque equation $\pi = \sqrt{\pi}$	
	$T = \left(\frac{1}{16}\tau_s \times d^3\right)$	
	$P = 2\pi NT/60$	
	2 Design of Hub	
	The hub is designed by considering it as a hollow shaft, transmitting the same torque (T) as	
	that of solid shaft.	
	$T = \frac{\pi}{16} X \tau_c \left[\frac{D^4 - d^4}{D} \right]$	
	The outer diameter of hub is usually taken as twice the diameter of shaft.D=2d	
	From above relation, the induced shearing stress in the hub may be checked.	
	The length of hub (L) = 1.5 d	
	3 Design of Key	
	Design of key with usual proportions of crushing and shearing stresses induced.	
	Length of key = Length of hub	
	4 Design of Flange	
	Considering shear failure of flange, we get	
	Torque transmitted,	
	T= Circumference of hub X Thickness of flange X Shear stress of flange X Radius of Hub	
	$T = \pi D X t_f X \tau_c X \frac{D}{2}$	
	Where $t_{\rm f}$ = Thickness of flange = $d/2$	
	From above equation, shear stress induced in the flange is checked	
	5 Design for bolts	
	a) Considering, shearing failure of bolts	
	Load on each bolt = $(\Pi/4)X (d_1)^2 X \tau_b$	
	Total load on all (i.e. n) bolts	
	$= \Pi/4 (d_1)^2 X \tau_b X n$	

		Torque transmitted $T = \frac{\pi}{d} \left(\frac{d}{d} \right)^2 X \tau X n X \frac{D_1}{d}$				
		$1 = \frac{1}{4} \left(\frac{a_1}{a_1} \right) \left(\frac{a_1 + a_2}{a_2} \right)$				
		From above equation, diameter of bolt (d1) may be obtained.				
		b) Considering, crushing failure of points The area resisting crushing of all the bolts $-n X d_x X t_y$				
		And crushing strength of all the bolts = $(nXd_1 X t_1 X \sigma_{ab}) \frac{D_1}{D_1}$				
		From the second				
2		From above equation, the induced crushing stress in the bolts may be checked.	1(
			10			
	a)	Explain any eight design considerations in machine design.	04			
	Ans.	Design considerations in automobile design: (Any eight)				
		1. Types of loads and stresses caused by the load.				
		2. Motion of parts and kinetics of machine.				
		3. Material selection criteria based on cost, properties etc.				
		4. Shape and size of parts.				
		5. Frictional resistance and lubrication.	04			
		6. Use of standard parts.				
		7. Safety operations.				
		8. Work shop facilities available.				
		9. Manufacturing cost.				
	1.)	10. Convenient of assembly and transportation.				
	D)	Design a knuckle joint for a tensile force of 40 KN. The safe stresses in the parts are 60 N/mm^2 in shear, 80 N/mm ² in tensile and 50 N/mm ² in crushing.	04			
	Ans.	Given Data:				
		$\mathbf{P} = 40 \times 103 \text{ N}$				
		$\sigma_{\rm s} = 60 \text{ N/mm}^2$				
		$\sigma_t = \delta 0 \ln/(11112)$ $\sigma_c = 50 \text{ N/mm2}$				
		i. Find Diameter of rod:-				
		$\mathbf{P} = \frac{\pi}{t} d^2 \boldsymbol{\sigma}_t$				
		$40 X 103 = \frac{\pi}{d^2} d^2 X 80$				
		$d = 25.23 \text{mm}^4$	01			
		d = 26 mm				
		ii. Find dimensions of fork end, eye end and knuckle pin by empirical				
		relations:-				
		1. Diameter of knuckle pin $d_1=d=26 \text{ mm}$				
		2. Outer diameter of eye end $d_2=2d=52 \text{ mm}$				
		3. Diameter of knuckle pin head or collar $d_3=1.5d=39 \text{ mm}$				
		4. Thickness of eye end $t=1.25d=32.5 \text{ mm}$				
		5. Thickness of forked end $t_1=0.75d=19.5 \text{ mm}$				
		6. Thickness of collar or head $t_2=0.5d=13 \text{ mm}$				

Government Polytechnic Nashik (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		$152.78 \times 10^3 = \frac{\pi}{16} \ 45 \ d^3$		
		d=25.86mm		
		d= 26 mm	01	
	e)	Explain the term standardization. State any four advantages of it.	04	
	Ans.	Standardization: - It is defined as obligatory norms to which various characteristics of a product should conform. The characteristics include materials, dimensions and shape of the component, method of testing and method of marking, packing and storing of the product.	02	
		Advantages of standardization:(Any Four)		
		1. Interchangeability of product or element is possible.		
		2. Mass production is easy.		
		3. Rate of production increases.		
		4. Reduction in labour cost.		
		6. Overall reduction in cost of production		
		7. Improves overall performance, quality and efficiency of product.	02	
		8. Better utilization of labour, machine and time.		
2			1(
3		Attempt any lour. Find the diameter of solid shaft to transmit 20kW at 200rpm. The ultimate shear stress	10	
	a)	for the shaft may be taken as 360N/mm ² and the F.O.S. as 8.	04	
		Answer: Given Data:		
		$P=20kW=20\times10^{3}W$		
		N=200rpm		
		$\sigma_s = 360/8 = 45 \text{ N/mm}^2$		
		Now the torque transmitted by the engine T:-		
		$2 \pi NT$		
		$P = \frac{1}{60}$		
		$2 \times 3.14 \times 200 \times T$		
		$20 \times 10^{3} = \frac{60}{60}$		
		$T = 955.41$ Nm $= 955.41 \times 10^3$ Nmm	02	
		Let, $d = diameter of rear axle,$		
		$T = \frac{\pi}{16} f_s d^3$		
		$955.41 \times 10^3 = \frac{\pi}{16} \times 45 \times d^3$		
		$d^3 = 108130.74$		
		$d = 47.64 mm \cong 48 mm$	02	

b)	Describe nipping of leaf spring with neat sketch.	04
	(Sketch – 2 marks & explanation – 2 marks) Nipping:	
	W W_b	02
	The initial gap 'C' between the extra full length leaf and graduated length leaf before the assembly is called as 'Nip'. Such pre-stressing, achieved by a difference in radii of curvature is known as 'Nipping'. When the central bolt holding the leaves is tightened, the full length leaf bend back as shown by dotted line. And will have an initial stress in opposite direction. The graduated leaves will have an initial stress in the same direction as that of normal load. When the load is applied, the full length leaf gets relieved first; consequently the full length leaf will be stressed less than graduated leaf. The initial leaf between leaves may be so adjusted that under maximum load conditions, all the leaves are equally stressed. So for this reason nipping is provided in leaf spring.	02
c)	Define Lever. Describe three basic types of leaver.	04
	Answer: (Defination-1 mark, Types of lever with description -1 mark each) Definition:- A lever is a rigid rod or a bar capable of turning about a fixed point called fulcrum. The load W and the effort P may be applied to the lever in three different ways as shown in Figure. Types of leaver: First type, second type and third type levers shown in figure at (a), (b) and (c) respectively. $ \begin{array}{c} P \\ P \\ P \\ P \end{array} $ $ \begin{array}{c} P \\ P \\ P \\ P \end{array} $ $ \begin{array}{c} P \\ P \\ P \\ P \\ P \end{array} $ $ \begin{array}{c} P \\ P \\$	04
	 advantage obtained is more than one. Examples: Such type of levers are commonly found in bell cranked levers used in railway signaling arrangement, rocker arm in internal combustion engines, handle of a hand pump, hand wheel of a punching press, beam of a balance, foot lever etc. b) Second type lever: In the second type of levers, the load is in between the fulcrum 	

	and effort. In this case, the effort arm is more than load arm; therefore the mechanical			
	advantage is more than one.			
	Examples: It is found in levers of loaded safety valves.			
	c) Third type lever: In the third type of levers, the effort is in between the fulcrum and			
	load. Since the effort arm, in this case, is less than the load arm, therefore the			
	mechanical advantage is less than one			
	Examples: The use of such type of levers is not recommended in engineering			
	practice. However a pair of tongs, the treadle of a sewing machine etc. are examples			
	of this type of lever.			
d)	Explain- Max. principal stress theory.	04		
,	Statement: According to this theory, the failure occurs at a point in a member when the			
	maximum normal stress in a bi-axial stress system reaches the limiting strength of the	04		
	material in a simple tension test			
	The maximum or normal stress in a bi-axial stress system is given by,			
	<i>.</i>			
	$\sigma_{x} = \frac{\sigma_{yt}}{\sigma_{x}}$ for ductile materials			
Ama	F.S.			
AIIS	$-\frac{\sigma_u}{\sigma_u}$ for brittle materials			
	$=\frac{1}{F.S.}$, for officientials			
	σ_{yt} = Yield point stress in tension as determined from simple tension			
	test, and			
	σ_{μ} = Ultimate stress.			
	-			
	Brittle material which are relatively strong in shear but weak in tension or compression			
	this theory are generally used.			
	Design the diameter of rear axle shaft for fully floating type with the following data:	04		
	Engine nower = 10 kW at 300 rpm.	0 -		
e)	Gear Box ratio= 4:1. 2.4:1. 1.5:1. 1:1.			
•)	Differential reduction = $6:1$.			
	shear stress for shaft material = 70 N/mm^2 .			
	Given:-			
	$P = 10 kW = 10 \times 10^3$			
	N = 300 rpm,			
	Max. gear ratio, $G_1 = 4 : 1$,			
	Differential reduction $G_d = 6:1$,			
	Shear stress = 70 N/mm ²			
	Now the torque transmitted by the engine T _e :-			
	$\mathbf{p} = \frac{2 \pi N T}{2 \pi N T}$			
	r = 60			
	$2 \times 3.14 \times 300 \times T_e$			
	$10 \times 10^{\circ} = \frac{60}{60}$			
	$T = 318.47$ Nm $= 219.47 \times 10^3$ Nmm			
	$I_g = 510.47$ MIII = 510.47 × 10 MIIIIII	01		
	Now torque transmitted by rear axle shaft T_{RA} ,			

		$T_{RA} = Te X G_1 X G_d$			
		$T_{RA} = 318.47 \times 10^3 \times 4 \times 6$			
		$T_{RA} = 7643.28 \times 10^3$			
		Let, $d = diameter of rear axle$.			
		$T_{-1} - \frac{\pi}{d} f d^3$			
		$1_{RA} = \frac{16}{16} J_s u$			
		$7643.28 \times 10^3 = \frac{\pi}{16} \times 70 \times d^3$			
		$d^3 = 556098.64$	02		
		$d = 82.233 mm \cong 83 mm$			
4	(A)	Attempt any three.	12		
	a)	Define factor of safety. State the factors affecting its selection.	04		
		Answer: (Def ⁿ - 2 marks, List of factors- 2 marks.)			
		Factor of Safety: Factor of safety is defined as the ratio of the maximum stress to the working			
		stress or design stress.			
		Mathematically,			
		Factor of Safety = $\frac{Maximum Stress}{Wanking stress}$			
		working stress			
		In case of ductile material,			
		Factor of Safety = $\frac{Yeild \ point \ stress}{Yeild \ point \ stress}$			
		Working stress			
		In case of brittle material,			
		Factor of Safety = $\frac{Ultimate\ stress}{}$			
		Working stress			
		The factors that influence the magnitude of factor of safety:(<i>anv two</i>)			
		1. Degree of Economy desired.			
		2. The reliability of applied load and nature of load,			
		3. The reliability of the properties of material and change of these properties during service,	02		
		4. The reliability of test results & accuracy of application of these results to actual machine			
		parts,			
		5. The certainty as to exact mode of failure,			
		 o. The extent of simplifying assumptions, 7 The extent of localized stresses 			
		8. The extent of initial stresses setup during manufacture.			
		9. The extent of loss of property if failure occurs,			
		10. The extent of loss of life if failure occurs.			
	b)	Give the application of following joints:	04		
	0)	i) Knuckle Joint ii) Turn Buckle			
		i) Application of Knuckle joint: $(Any two - 1 mark each)$			
		1. Tie rod joints for roof truss	02		
		2. Valve rod joint for eccentric rod pump rod joint	U Z		
		3. Tension link in bridge structure			
		4. Lever and rod connections			

	5. Swing arm of two wheeler					
	6. Connection of link rod of leaf springs in multi axle vehicles					
	7. Piston ,Piston Pin ,Connecting Rod					
	8. Connections of leaf spring with chassis					
	ii) Application of Turn Buckle: (Any	v two – 1 mark each)				
	1. Tie rod of steering system					
	2. To connect compartments of	locomotives		(02	
	3. Tie strings of electric poles					
	4. link rod of leaf springs in mu	lti axle vehicles				
	5. linkages of gear shifter					
	6. Connection between brake pe	dal and master cylinder	•			
	Define :			(04	
a)	i) Indicated power					
C)	ii) Brake power.					
	iii) Frictional power and sta	ate relation between th	em.			
	Answer: (Each correct definition- 1	mark, Relation betwee	en power -1 mark)			
		1 1 1 1 1 1 1		. 1		
	1) Indicated power: The pow	er developed inside tr	ie cylinder is known as indica	ated		
	power.					
	ii) Brake power: This is the ac	tual power delivered at	the crankshaft.			
		ium potter dentiered ut				
	iii) Frictional power: Power lo	st in frictional losses at	the working surfaces like bear	ing,		
	piston rings, valves etc. is know	own as frictional power.		(04	
	Relation between Indicated power, Brake power and Frictional power:					
1)	(Frictional power = indicated	power - brake power)		0.4	
a)	Differentiate between hand lever	and loot lever.			J4	
	Answer(any jour point: 1 mark ea	cn)				
	Parameter	Hand lover	Footlover			
	1 Load corrying					
		400IN	8001			
	2 Cross section	Siroular Doctorgular	Circular Bostongular			
	2. Closs section C	or cross shaped	cricular, Rectangular			
	2 Operational	Und operated	Foot operated		04	
	5. Operational method	manu operateu.				
	A Applications	Hand nump Clutch	Rear brake lever of			
		ever and brake lever	motorevele Four			
		of motorcycle hand	wheeler clutch brake			
		hrake	accelerator lever			
		01000.				
(B)	Attempt any one.			(06	
/	Design bushed pins only for a flexi	ble coupling to transn	nit 18 kW at 900 rpm. Diame	ter (06	
	of shaft for coupling is 60 mm. All	owing shear and bendi	ing stresses in pin are 25 N/m	\mathbf{m}^2		
a)	and 50 N/mm ² respectively. The allowable bearing pressure in rubber bush in 0.3					
	N/mm ² .					
	Answer:					
	Given $P = 18kw = 18 \times 10^3 watts$					

D=60mm $d_1 = 55 \text{ mm}$ $f_{sp} = 25 \text{N/mm}^2$ $f_{sk} = 40 \text{N/mm}^2$ $P_{\rm b} = 0.3 \, \text{N/mm}^2$ $f_{bp} = 50 N/mm^2$ We know that torque transmitted, $T = \frac{P \times 60}{2 \prod N} = \frac{18 \times 10^3 \times 60}{2 \times 3.14 \times 900}$ =191N - m $T = 191 \times 10^3 N - mm$ n = no. of pins d_1 = diameter of pin at neck $d_3 =$ diameter of pin in the bush $t_1 =$ thickness of brass bush $t_2 =$ thickness of rubber bush D_1 = diameter of pitch circle of pins =3D =3 x 60= 180 $t_3 =$ thickness of pin head d_4 = diameter of pin head We know that $n = \frac{d}{25} + 3$ $n = \frac{60}{25} + 3$ *.*.. n = 5.4.... Taking next higher even number n = 6*.*. Now diameter of pin, $d_1 = \frac{0.5d}{\sqrt{n}} = \frac{0.5 \times 60}{\sqrt{6}}$ $d_1 = 12.24 \text{ mm}$ $d_1 = 13 \, \text{mm}$ Now $d_3 = 1.5d_1$ $=1.5 \times 13$ $d_3 = 19.5 \,\mathrm{mm}$ A brass sleeve of thickness' t_1 ' and a rubber bush of thickness ' t_2 ' is fitted on this pin diameter d_3 $t_1 = 2 \, mm$ $t_{2} = 6 \, \text{mm}$ And Now outer diameter of rubber bush, $d_2 = d_3 + 2 \times t_1 + 2 \times t_2$

 $= 19.5 + 2 \times 2 + 2 \times 6$

01

 $d_2 = 35.5 \text{ mm}$ Now pitch circle diameter of pins $D_1 = 3d$ $=3\times60$ $D_1 = 180 \text{ mm}$ Let us assume thickness of pin head. $t_3 = 3 mm$ Now diameter of pin head $d_4 = d_2 - t_3$ =35.5-3 $d_4 = 32.5 \text{ mm}$ Let W= load on each pin L= Length of bush in left hand flange. Now torque $T = W.n.\left(\frac{D_1}{2}\right)$ $W = \frac{T \times 2}{D_1 \times n}$ *.*.. $W = \frac{191 \times 10^3 \times 2}{180.0 \times 6}$ W = 353.7N *.*.. **Bearing pressure on rubber bush,** $P_b = 0.3 \text{ N/mm}^2$ given $w = d_2 \times i \times P_b$ $353.7 = 35.5 \times i \times 0.3$ $l = 33.21 \,\mathrm{mm}$ l = 34 mmClearance between flanges, C = 0.1 d $= 0.1 \times 60$ =6mmStresses in pin $f_{sp} = direct shear stress in pin$ W $\overline{\frac{\Pi}{4}d_1^2}$ $=\frac{353.7}{\frac{\Pi}{4}(13)^2}$ $= 2.66 \text{N/mm}^2$ **Bending moment in pin** $M = w \left[\frac{l}{2} + C \right]$ $\therefore \qquad M = 353.7 \left| \frac{34}{2} + 6 \right|$ M = 353.7[23]*.*..

01

01

	$\therefore \qquad M = 8.135 \times 10^3 \text{N} - \text{mm}$	
	\therefore Bending stress, $F = \frac{m}{m} = \frac{m}{m}$	
	$\frac{Z}{32} = \frac{11}{32}(d_1)^3$	
	8.135×10^3	
	$\therefore \qquad \mathbf{F} = \frac{\mathbf{F} - \mathbf{F}}{\Pi (12)^3}$	
	$\frac{1}{32}$ (13)	01
	$\therefore \qquad F = 37.73 \text{N/mm}^2$	
	Now maximum principal stress induced in pin (Maximum bending stress)	
	$f = \frac{1}{2} \left[F \sqrt{(F)^2 + 4(f_{sp})^2} \right]$	
	$=\frac{1}{2}\left[37.73 + \sqrt{(37.73)^2 + 4(2.66)^2}\right]$	
	$=\frac{1}{2}[37.73+38.103]$	
	$-37.91 \mathrm{N/mm^2}$	
	This value is less than allowable bending stress in pin (50 N/mm ²), hence design is safe.	
	Now maximum shear stress induced in pin.	
	$f_{s \max} = \frac{1}{2} \sqrt{(F)^2 + 4(f_s)^2}$	
	$-\frac{1}{2} \times \sqrt{(37.73)^2 + 4(2.66)^2}$	
	$\frac{2}{2}$	
	$=\frac{1}{2}\times 38.10$	01
	$\therefore \qquad f_{s \max} = 19.05 \text{ N/mm}^2$	
	This value is less than allowable shear stress in pin (25 N/mm ²), hence the design is safe.	
	A four stroke diesel engine has following specifications.	
	B.P5kW at 1200 rpm Indicated mean effective pressure 0.35 N/mm ²	
b)	Mechanical efficiency 80%	06
	Determine :	
	i) Bore and length of cylinder ii) Thickness of cylinder head	
	Answer: (<i>Note: Assume</i> $l = 1.5 D OR l = 1.08 D$)	
	Given:	
	B.P. = 5kW = 5000 W	
	N = 1200 r.p.m. or n = N/12 = 600 $P_m = 0.35 \text{N/mm}^2$	
	$\eta_{\rm m} = 80\% = 0.8$	
	1. Bore and length of cylinder	
	Let D= Bore of the cylinder in mm	
	A= across section area of the cylinder $=\frac{11}{4} \times D^2 mm^2$	
	l= length of the stroke in m. - 1.5 D mm - 1.5 D/ 1000 m	

		We know that the indicated power	
		$I.B. = B.P./\eta_{\rm m} = 5000/0.8 = 6250w$	
		We also know that the indicated power (I.P.)	
		$6250 = \frac{P_m l.A.n}{P_m} = \frac{0.35 \times 1.5D \times \Pi D^2 \times 600}{1000} = 4.12 \times 10^{-3} D^3$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\therefore D^{\circ} = 6250/4.12 \times 10^{\circ} = 151/\times 10^{\circ} \text{ or } D = 115 \text{ mm}$	03
		$l = 1.5D = 1.5 \times 115 = 172.5mm$	
		Taking a clearance on both sides of the cylinder equal to 15 % of the stroke therefor length of the cylinder.	
		$L = 1.15l = 1.15 \times 172.5 = 198$ say 200 mm	
		2. Thickness of the cylinder head	
		Since the maximum pressure (P) in the engine cylinder is taken as 9 to 10 times means effective pressure (P_m) therefore let us take	
		$P = 9P_m = 9 \times 0.35 = 3.15N / mm^2$	
		We know that thickness of the cylinder head,	
		(Taking C= 0.1 and $\sigma_t = 42$ MPa = 42 N/mm ²)	
			03
		$t_h = D_V \frac{C.p}{\sigma_t} = 115_V \frac{0.1 \times 3.15}{42} = 9.96 \text{ say } 10 \text{ mm}$	
5		Attempt any TWO of the following.	12
	a)	A truck spring has 12 number of leaves, two of which are full length leaves.the spring	
		supports are 1.05 m aparts and central band is 85 mm wide. The central load is 5.4 kN	
		with a permissible stress of 280 N/mm ² . Determine thickness and width of the steel	
		spring leaves. The ratio of total depth to the depth to the width of the spring is 3. Also	
		determine the deflection of the spring.	
		Answer: Given data	
		Total number of leaves n=12	
		Number of full length leaves $n_F=2$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=12-2} = 10$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$ Width of central band $l=85 \text{ mm}$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$ Width of central band $l=85 \text{ mm}$ Effective length of spring $2L = 2L_1 - 1 = 1050 - 85 = 965 \text{ mm}$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$ Width of central band $l=85 \text{ mm}$ Effective length of spring $2L = 2L_1 - 1 = 1050 - 85 = 965 \text{ mm}$ L = 482.5 mm	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$ Width of central band $l=85 \text{ mm}$ Effective length of spring $2L = 2L_1 - 1 = 1050 - 85 = 965 \text{ mm}$ L = 482.5 mm Central Load $2W = 5.4 \text{ KN} = 5400 \text{ N}$	
		Number of full length leaves $n_F = 2$ Number of graduate leaves $n_G = n - n_{f=} 12 - 2 = 10$ Distance between spring supports $2L_1 = 1.05 \text{ m} = 1050 \text{ mm}$ Width of central band $l=85 \text{ mm}$ Effective length of spring $2L = 2L_1 - l = 1050 - 85 = 965 \text{ mm}$ L = 482.5 mm Central Load $2W = 5.4 \text{ KN} = 5400 \text{ N}$ W=2700 N	

	Permissible stress =280 N/mm ²		
	Depth /width = $3 = (n \times t) / b$		
	$12\frac{t}{b} = 3$		
	b = 4t		
	Assuming that leaves are not initially stressed 18WL		
	$\sigma_b = \frac{1}{bt^2 (2 n_G + 3n_F)}$		
	$280 = \frac{18WL}{bt^2(2 n_G + 3n_F)}$		
	$280 = \frac{18 \times 2700 \times 482.5}{4t \times t^2 (2 \times 10 + 3 \times 2)}$		
	$t^3 = 805.27$ t=9.31 mm	4	
	Thickness $t=10 \text{ mm}$ and Width of spring $b=4 \text{ t} =4 \text{ x} 10 = 40 \text{ mm}$		
	Deflection of the spring:		
	$\delta = \frac{12WL^3}{Ebt^3\left(2n_G+3n_F\right)}$		
	$280 = \frac{12 \times 2700 \times 482.5^3}{0.21 \times 10^6 \times 40 \times 10 (2 \times 10 + 3 \times 2)}$		
	(Taking $E = 0.21 \times 10^6 \text{ N/mm}^2$)		
	Deflection of the spring δ =16.7 mm	4	
(b)	Design piston pin with following data: Max. gas pressure = 4 N/mm ² Diameter of piston =70 mm Allowable stresses due to bearing, bending and shear are given 30 N/mm ² ,80 N/mm ² , 60 N/mm ² respectively.		
	Dia. of piston = D = 70 mm. Max. pressure = $P_{max} = 4 \text{ N/mm2}$ Bearing pressure $P_b = 30 \text{ N/mm2}$ Bending stress = $\sigma_b = 80 \text{N/mm2}$ Shearing stress = $\tau = 60 \text{ N/mm2}$		
	Maximum gas load, $W = \frac{\pi}{4} D^2 \times P_{max}$		
		1	1

 $W = \frac{\pi}{4} \times 70^2 \times 4$ $W = 15.39 \times 10^{3} N$ Design the piston pin on the basis of bearing pressure Let, $d_{po} =$ outer dia. of piston pin lp = length of piston pin in small end of connecting rod $l_p = 0.45 \text{xD} = 0.45 \text{x70}$ $l_p = 31.5 \text{ mm}$ $F = d_{po} \ge l_p \ge P_b$ $d_{po} = \frac{15.3938 \times 10^3}{31.5 \times 30}$ $d_{po} = 16.29 mm$ $d_{po} = 17mm$ Designing the piston pin on the basis of bending. 'Bending moment 'M' is calculated as $M = F x \frac{D}{8}$ $M = \frac{15.3938 \times 10^3 \times 70}{8}$ $M = 134.69 \text{ x} 10^3 \text{ N-mm}$ We know that. $M = \frac{\pi}{32} x \sigma_b x (d_{po})^3$ 134.69 x 10³ = $\frac{\pi}{32} x \sigma_b x (17)^3$ $\sigma_{\rm b} = 279.2589 \ {\rm N/mm}^2$ The induced bending stresses are greater than permissible bending stress 80N/mm2 hence redesign is necessary. Now redesign value of dpo $M = \frac{\pi}{32} x \sigma_b x (d_{po})^3$ 134.69 x 10³ = $\frac{\pi}{32} x 80 x (d_{po})^3$ dpo =25.79 mm $d_{po} = 26 \text{ mm}$ c) Designing piston pin on the basis of shear stress, due to double shear. $F = 2x\pi/4(Dpo)^2 x \tau$ $15.39 \ge 10^3 = 2 \ge \pi/4 \ge 26^2 \ge \tau$ $T = 14.49 \text{ N/mm}^2$ The induced shear stresses are less than permissible shear stress. Hence design is safe. d) The total length of piston pin is taken as $L_{pt} = 0.9D = 0.9x70 = 63mm$

2 Marks for each point

		Third gear ratio: G3=1:1	3
		Reverse gear ratio: $\frac{TA}{X} \frac{TI}{X} \frac{TR}{X}$	
6		Attempt any TWO of the following	
	a)	A multiple disc clutch has five plates having four pairs of active friction surfaces. If the	
		intensity of pressure is not to exceed 0.127 N/mm ² . Find power transmitted at 500 rpm.	
		The outer and inner radii of friction surfaces are 125 mm and 76 mm respectively.	
		Assume uniform wear and take coefficient of friction =0.3	
		Answer: Given Data: $n_1 + n_2 = 5$; $n = 4$	
		$P max = 0.127 N/mm^2$	
		Speed of clutch $N = 500$ rpm	
		Outer radius $r_1 = 125 \text{ mm}$	
		Inner radius $r_2 = 76 \text{ mm}$	
		Coefficient of friction $\mu = 0.3$	
		Power transmitted by the clutch P	
		For uniform wear, $p.r = C$ (a constant).	
		The intensity of pressure is maximum at the inner radius (r ₂),	
		therefore, Pmax x $.r_2 = C$	
		$C = 0.127 \times 76$	2
		C = 9.652 N/mm	
		Axial force required to engage the clutch,	
		$W = 2\pi C (r_1 - r_2)$	
		$W = 2\pi \times 9.652 (125 - 76)$	
		W = 2970 N	2
		Mean radius of the friction surfaces, $R = (76+125)/2 = 100.5 \text{ mm}$	
		The torque transmitted,	
		$T = n.\mu.W.R$	
		$T=4\times0.3\times2970\times100.5$	2
		$T = 358.18 \times 10^{-3} N-mm$	
		Power transmitted,	
		$P = (2 \pi n T) / 60$	
		$P = (2\pi \ x \ 500 \ x \ 358.8) / \ 60$	2
		P= 18.74 KW	

b)	Explain the design procedure used to design the piston rings and piston skirts.	
	(Piston rings 4Marks and piston skirts 4Marks)	
	Thickness Gap Diameter	
	Fig. Piston rings.	
	The radial thickness (t_1) of the ring may be obtained by considering the radial pressure between the	
	cylinder wall and the ring. From bending stress consideration in the ring, the radial thickness is given	
	by	
	$t_1 = D_{\sqrt{\frac{3p_w}{\sigma_t}}}$	
	Where, $D = Cylinder$ bore in mm,	
	p_w = Pressure of gas on the cylinder wall in N/mm ² .	
	σ_t = Allowable bending (tensile) stress in MPa.	
	The axial thickness (t_2) of the rings may be taken as 0.7 t_1 to t_1 .	
	The minimum axial thickness (p_2) may also be obtained from the following empirical relation:	
	$t_2 = \frac{D}{10 n_R}$	
	where, $n_{\rm R}$ = Number of rings.	
	Width of top land,	
	$b_1 = t_{\rm H} \text{ to } 1.2 t_{\rm H}$	
	Width of other ring lands, $b_2 = 0.75 t_2$ to t_2	
	The gap between the free ends of the ring is given by $3.5 t_1$ to $4 t_1$.	4
	Design of Skirt Length: R = Normal side thrust acting on piston skirts	
	Maximum gas load $F = P_{max} \times \frac{\pi}{4} D^2$	
	R = Normal side thrust acting on piston skirts ∵ Side thrust = 10%	
	\therefore R = 0.1 F	
	Let, $l_1 = \text{length of piston skirt}$	4
	The piston skirt act as a bearing inside the liner	
	We have, $R = l_1 \times D \times P_b$	

c)	Design the connecting rod cross-section with the following data of petrol engine: Max. Pressure inside the cylinder = 4.5N/mm ² , piston diameter =70 mm, Stroke Length= 80 mm , effective length of connecting rod =140 mm and maximum allowable stress in the connecting rod in crippling is 100 N/mm ² . Take Rankine constant for steel is 1/1600.	
	Answer: Given Data Max. pressure inside Pmax =4.5 N/mm ² Piston Dia D=70 mm	
	Stroke length=1 Effective Length of connecting rod mm L= 140 mm Maximum allowable stress in the connecting rod in crippling is 100 N/mm ² Rankine constant for steel is = 1/1600. Step I Max gas load acting on the connecting rod $W = P_{max} \times \frac{\pi}{4} \times D^2$	1
	4^{4} W = 3846.5 x 4.5 = 17310 N Area of cross section A = 11 t ²	
	where t = thickness of Flange a = Rankine constant = 1/1600 $K_{xx}^2 = 3.18 t^2$ $K_{xx} = 1.78 t$ Step II Critical bucking load acting on the connecting rod As Factor of safety is not given in example statement, so consider factor of safety as 1)	1
	Critical bucking load = $W \times FOS$ Consider FOS =1	
	Critical bucking load = $17310 \text{ x } 1 = 17310 \text{ N}$	
	Assuming I section, Max. crippling load is,	
	$W_{cr} = \frac{\sigma_c \times A}{1 + \alpha [\frac{L}{K_{xx}}]^2}$	4
	$17310 = \frac{100 \times 11t^2}{1 + \frac{1}{1600} \left[\frac{140}{1.78t}\right]^2}$	
	t=4.5 mm Consider thickness t=5 mm Dimension at the middle or center: (i) Depth or height of section: H = 5 t = 5 x 5 = 25 mm (ii) width of cross section B = 4 t = 4 x5 = 20mm Dimension at the big end (crank end): (i) Depth or height of section: At the big end $H_2 = 1.2H = 1.2(25) = 30mm$ (ii) width of cross section	2
	B2=B=20 mm	