

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

17559

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	Α	Attempt any three of the following	12
	a)	Primary energy is an energy form found in nature that has not been subjected to any conversion or transformation process.	2
		The primary energy sources are derived from: the sun, the earth's heat, the wind, water	
		(rivers, lakes, tides, and oceans), fossil fuels - coal, oil, and natural gas, biomass, and radioactive minerals.	
		Secondary energy Secondary energy refers to the more convenient forms of energy which	
		are transformed from other, primary, energy sources through energy conversion processes.	
		Examples are electricity, which is transformed from primary sources such as coal, raw oil,	
		fuel oil, natural gas, wind, sun, streaming water, nuclear power, gasoline etc.	
		OR	
		Conventional Energy sources: These sources are exhaustible after use.	2
		e.g Coal, crude oil, Gas	

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

	Non-Conventional energy sources: These sources can renew again and again.	
	e.g Solar, Wind, Biomass, Hydro	
b)	Natural draft cooling towers	
	As their name implies, natural draft cooling towers rely on natural convection to circulate air	
	throughout the tower, which then cools the water. Air movement occurs due to differences in	
	density between the entering air and the internal air within the tower. Warm, moist air, which	
	is more dense than cool air, will naturally rise through the tower, while the dry, cool air from	
	outside will fall, creating a constant cycle of air flow.	
	Mechanical draft cooling towers	
	Unlike natural draft cooling towers, mechanical draft cooling towers employ fans or other	
	mechanics to circulate air through the tower. Common fans used in these towers include	
	propeller fans and centrifugal fans. Mechanical draft towers are more effective than natural	
	draft towers, and can even be located inside a building when exhausted properly. However,	
	they consume more power than natural draft cooling towers and cost more to operate as a	
	result.	
	Crossflow towers and counterflow towers are the two types of mechanical draft cooling	
	towers:	
	Crossflow towers	
	In a crossflow tower, air flows horizontally through the cooling tower's structure while hot	
	water flows downward from distribution basins. Crossflow towers can be as tall as	
	counterflow towers, but they're also more prone to freezing and are less efficient.	
	Counterflow towers	
	Counterflow towers move air upward through the tower while water flows downward to cool	
	the air. These towers are often more compact in footprint than crossflow towers, and can	
	save energy in the long run.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Energy Management

Subject Code:

			- -
	c)	Specific heat: The specific heat is the amount of heat per unit mass required to raise the	2+2
		temperature by one degree Celsius.	
		Calorific Value: It is the amount of heat released during combustion of a unit quantity of	
		fuel.	
	d)	Benchmarking	
		Benchmarking is the process of comparing one's business processes and performance	2
		metrics to industry bests or best practices from other companies.	
		Gross production related:	
		kWh/MT clinker or cement produced (cement plant)	
		kWh/kg yarn produced (textile unit)	2 marks
		kWh/MT , kcal/kg, paper produced (paper plant)	for any
		kcal/kWh power produced (heat rate of power plant)	two examples
		million cal/MT urea or ammonia (fertilizer plant)	······
		kWh/MT of liquid metal output (in a foundry)	
		utility related :	
		kW/ ton of refrigeration (on air conditioning plant)	
		% thermal efficiency of a boiler plant	
		% cooling tower effectiveness in a cooling tower	
		kWh/Nm ³ of compressed air generated	
		kWh/liter in a diesel power generation plant	
1	В	Attempt any one of the following	6
	a)	Types of fuels with example based on physical state	2 +2+2

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

	Solid fuels: Coal, Uranium, Wood	
	Liquid fuel : Petroleum products (petrol, diesel, aviation fuel), biodiesel, ethanol	
	Gaseous fuel : LPG, CNG, Biogas, Hydrogen	
b)	Power available in wind	6
	The kinetic energy (KE) of an object (or collection of objects) with total mass M and	
	velocity \mathbf{V} is given by the expression:	
	$KE = 1/2 M V^2$	
	Now, for purposes of finding the kinetic energy of moving air molecules (i.e.:wind),	
	let's say one has a large air parcel with the shape of a huge hockey puck: that is, it has the	
	geometry of a collection of air molecules passing though the plane of a wind turbine's blades	
	(which sweep out a cross-sectional area A), with thickness (D) passing through the plane	
	over a given time. The volume (Vol) of this parcel is determined by the parcel's area	
	multiplied by its thickness:	
	Vol = AD	
	Let ρ (the greek letter 'rho') represent the density of the air in this parcel. Note that	
	density is mass per volume and is expressed as:	
	$\rho = M / Vol$	
	and a little algebra gives: $M = \rho Vol$	
	Now let's consider how the velocity (\mathbf{V}) of our air parcel can be expressed. If a time \mathbf{T}	
	is required for this parcel (of thickness D) to move through the plane of the wind turbine	
	blades, then the parcel's velocity can be expressed as	
	V = D / T,	
	and a little algebra gives	
	D = V T	
	Let's make some substitutions in expression no. 1	
	$(KE = 1 / 2 M V^2)$	
	Substitute for $M (= \rho \text{ Vol })$ to obtain:	

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

		$KE = 1/2 (\rho Vol) V^2$	
		And Vol can be replaced by A D to give:	
		$KE = 1/2 (\rho A D) V^2$	
		And D can be replaced by $\mathbf{V} * \mathbf{T}$ to give:	
		$KE = 1/2 (\rho A V T) V^2$	
		Leaving us with:	
		$KE = 1/2 \rho V^3 A T$	
		Now, power is just energy divided by time, so the power available from our air parcel	
		can be expressed as :	
		P = KE / T	
		$= (1 / 2 \rho V^3 A T) / T$	
		$\mathbf{P} = 1/2 \rho \mathbf{V}^3 \mathbf{A}$	
2		Attempt any four of the following	16
	a	Energy saving opportunities in cooling tower (any four)	
		• Follow manufacturer's recommended clearances around cooling towers and relocate	
		or modify structures that interfere with the air intake or exhaust	
		• Optimize cooling tower fan blade angle on a seasonal and/or load basis	
		• Correct excessive and/or uneven fan blade tip clearance and poor fan balance	
		• In old counter-flow cooling towers, replace old spray type nozzles with new square	1 mark
		spray nozzles that do not clog	anch for
		• Replace splash bars with self-extinguishing PVC cellular film fill	any four
		• Install nozzles that spray in a more uniform water pattern	any ioui
		Clean plugged cooling tower distribution nozzles regularly	
		• Balance flow to cooling tower hot water basins	
		• Cover hot water basins to minimize algae growth that contributes to fouling	
		• Optimize the blow down flow rate, taking into account the cycles of concentration	
		(COC)	
		• limit	

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

	cellula	ar units		
	Restrict flows	s through large loads to design values		
b	Difference b	etween conventional and non-conven	ntional energy sources	1 mark
	criteria	Renewable energy sources	Non renewable energy sources	eac differe
	availability	These sources can renew again and	These sources are exhaustible after	
	pollution	These sources are pollution free.	These sources are creating pollution.	
	cost	Capital investment is more but fuel	Capital investment is less but fuel	
	application	Most common application is for	Most common application is for	
		preparation of food, drying grains	generation of electricity and heat	
	Energy Audit	t is the translation of conservation id	eas into realities, by lending technically	
	time frame.	ions with economic and other organiz	zational considerations within a specified	
	time frame. The	primary objective of Energy Audit	is to determine ways to reduce energy operating costs. Energy Audit provides a	
	time frame. The consumption "bench-mark" the basis for t	primary objective of Energy Audit per unit of product output or to lower ' (Reference point) for managing energy planning a more effective use of energy	is to determine ways to reduce energy operating costs. Energy Audit provides a rgy in the organization and also provides y throughout the organization.	
	time frame. The consumption "bench-mark" the basis for p Instruments	primary objective of Energy Audit per unit of product output or to lower ' (Reference point) for managing ener planning a more effective use of energy used for energy audit:	is to determine ways to reduce energy operating costs. Energy Audit provides a rgy in the organization and also provides y throughout the organization.	2
	time frame. The consumption "bench-mark" the basis for p Instruments • Electr	primary objective of Energy Audit per unit of product output or to lower ' (Reference point) for managing ener planning a more effective use of energy used for energy audit: ical measuring instruments- to measure	is to determine ways to reduce energy operating costs. Energy Audit provides a rgy in the organization and also provides y throughout the organization.	2
	time frame. The consumption "bench-mark" the basis for p Instruments • Electr • Comb	primary objective of Energy Audit per unit of product output or to lower ' (Reference point) for managing ener olanning a more effective use of energy used for energy audit: ical measuring instruments- to measure ustion analyzer- For flue gas analysis	is to determine ways to reduce energy operating costs. Energy Audit provides a rgy in the organization and also provides y throughout the organization.	2
	time frame. The consumption "bench-mark" the basis for p Instruments • Electr • Comb • Thern	primary objective of Energy Audit per unit of product output or to lower ' (Reference point) for managing ener olanning a more effective use of energy used for energy audit: ical measuring instruments- to measure ustion analyzer- For flue gas analysis nometer (contact thermometer)- For ter	is to determine ways to reduce energy operating costs. Energy Audit provides a rgy in the organization and also provides y throughout the organization.	2

Subject Name: Energy Management

SUMMER-18 EXAMINATION

<u>Model Answer</u>

Subject Code:

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

а	Salient features of Energy conservation act 2001	
	The Act empowers the Central Government and, in some instances, State Governments to:	1 mark
	 specify energy consumption standards for notified equipment and appliances; direct mandatory display of label on notified equipment and appliances; prohibit manufacture, sale, purchase and import of notified equipment and appliances not conforming to energy consumption standards; notify energy intensive industries, other establishments, and commercial buildings as designated consumers; establish and prescribe energy consumption norms and standards for designated consumers; prescribe energy conservation building codes for efficient use of energy and its conservation in new commercial buildings having a connected load of 500 kW or a 	each for any four features
	contract demand of 600 kVA and above;	
	direct designated consumers to -	
	 designate or appoint certified energy manager in charge of activities for efficient use of energy and its conservation; get an energy audit conducted by an accredited energy auditor in the specified manner and interval of time; furnish information with regard to energy consumed and action taken on the recommendation of the accredited energy auditor to the designed agency; comply with energy consumption norms and standards; prepare and implement schemes for efficient use of energy and its conservation if the prescribed energy consumption norms and standards are not fulfilled; get energy audit of the building conducted by an accredited energy auditor in this specified manner and intervals of time. 	
b	Three T`s of combustion	

Model Answer

Subject Name: Energy Management

Subject Code:

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

		Portable Boiler	
		Locomotive	
		Marine Boiler	
]	Boiler Evaporation ratio	1
	I	Evaporation ratio = quantity of steam generation/quantity of fuel consumed	
	d I	Box type solar cooker	4
		The important parts of a hot box solar cooker include the outer box, inner cooking box	
	C	or tray, the double glass lid, thermal insulator, mirror and cooking containers.	
	1	. Outer Box : The outer box of a solar cooker is generally made of G.I. or aluminum	
		sheet or fibre reinforced plastic.	
	2	Inner Cooking Box (Tray) : This is made from aluminum sheet. The inner cooking	
		box is slightly smaller than the outer box. It is coated with black paint so as to easily	
		absorb solar radiation and transfer the heat to the cooking pots.	
	3	Double Glass Lid: A double glass lid covers the inner box or tray. This cover is	
		slightly larger than the inner box. The two glass sheets are fixed in an aluminum frame	
		with a spacing of 2 centimeters between the two glasses. This space contains air which	
		insulates and prevents heat escaping from inside. A rubber strip is affixed on the edges	
		of the frame to prevent any heat leakage.	
	4	. Thermal Insulator: The space between the outer box and inner tray including bottom	
		of the tray is packed with insulating material such as glass wool pads to reduce heat	
		losses from the cooker. This insulating material should be free from volatile materials.	
	5	Mirror: Mirror is used in a solar cooker to increase the radiation input on the	
		absorbing space and is fixed on the inner side of the main cover of the box. Sunlight	
		falling on the mirror gets reflected from it and enters into the tray through the double	
		glass lid. This radiation is in addition to the radiation entering the box directly and	
		helps to quicken the cooking process by raising the inside temperature of the cooker.	
	(6. Containers: The cooking containers (with cover) are generally made of aluminum or	
		stainless steel. These pots are also painted black on the outer surface so that they also	
I	I		

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

		Hast input	
		Both heat input and heat output must be measured. The measurement of heat input requires	
		knowledge of the calorific value of the fuel and its flow rate in terms of mass or volume,	
		according to the nature of the fuel.	
		For gaseous fuel: A gas meter of the approved type can be used and the measured volume	
		should be corrected for temperature and pressure. A sample of gas can be collected for	
		calorific value determination, but it is usually acceptable to use the calorific value declared	
		by the gas suppliers.	
		For liquid fuel: Heavy fuel oil is very viscous, and this property varies sharply with	
		temperature. The meter, which is usually installed on the combustion appliance, should be	
		regarded as a rough indicator only and, for test purposes, a meter calibrated for the particular	
		oil is to be used and over a realistic range of temperature should be installed. Even better is	
		the use of an accurately calibrated day tank.	
		For solid fuel: The accurate measurement of the flow of coal or other solid fuel is very	
		difficult. The measurement must be based on mass, which means that bulky apparatus must	
		be set up on the boiler-house floor. Samples must be taken and bagged throughout the test,	
		the bags sealed and sent to a laboratory for analysis and calorific value determination. In	
		some more recent boiler houses, the problem has been alleviated by mounting the hoppers	
		over the boilers on calibrated load cells, but these are yet uncommon.	
		Heat output	
		There are several methods, which can be used for measuring heat output. With steam boilers	
		an installed steam meter can be used to measure flow rate, but this must be corrected for	
		an instance steam meter can be used to measure now rate, but this must be corrected for	
		temperature and pressure. It is now more viable with modern now meters of the variable-	
		orifice or vortex-shedding types.	10
4	Α	Attempt any three of the following	12
	a)	Biogas Plant	
		Construction	

SUMMER-18 EXAMINATION Model Answer

Subject Name: Energy Management

Subject Code:

It consits of inlet tank, digester and outlet tank. Sluury is prepeared in inlet tank. Mass is	1
digeated in digester. Gas is collected at the top dome. Digested mass comes our from outlet	
tank. Gas is taken out by outlet pipe from top.	
Working	
• The feed material is mixed with water in the influent collecting tank The fermentation	
slurry flows through the inlet into the digester.	1
• The bacteria from the fermentation slurry are intended to produce biogas in the	
digester.	
• The process of anaerobic digestion occurs in a sequence of stages involving	
distinct types of bacteria.	
• Hydrolytic and fermentative bacteria first break down the carbohydrates, proteins	
and fats present in biomass feedstock into fatty acids, alcohol, carbon dioxide,	
hydrogen, ammonia and sulfides.	
• This stage is called "hydrolysis" (or "liquefaction").	
• Next, acetogenic (acid-forming) bacteria further digest the products of hydrolysis	
into acetic acid, hydrogen and carbon dioxide.	
• Methanogenic (methane-forming) bacteria then convert these products into	
biogas.	
• The combustion of digester gas can supply useful energy in the form of hot air,	
hot water or steam.	
Gobar Soil Scum Out let	2
Active Power: Active - or real or true - power is the power that is used to do work on the	1

SUMMER-18 EXAMINATION Model Answer

Subject Name: Energy Management

Subject Code:

	load. Active power is measured in watts (W) and is the power drawn by the electrical	
	resistance of a system doing useful work.	
	Reactive Power: The power which flows back and froth that mean it moves in both the	1
	direction in the circuit or react upon itself, is called Reactive Power. The reactive power is	1
	measured in kilo volt ampere reactive (kVAR) or MVAR.	
	Apparent Power: Apparent power is the power supplied to the circuit. Apparent Power is	1
	measured in volt-amperes (VA) and is the voltage on an AC system multiplied by all the	
	current that flows in it.	
	The power factor: of an AC electrical power system is defined as the ratio of the real power	1
	flowing to the load to the apparent power in the circuit, and is a dimensionless number	
	between 0 and 1.	
	Power Factor (PF) is the ratio between the active power (kW) and apparent power (kVA).	
c)	Geothermal energy	4
	Geothermal power plants use steam produced from reservoirs of hot water found a few miles	
	or more below the Earth's surface to produce electricity. The steam rotates a turbine that	
	activates a generator, which produces electricity. There are three types of geothermal power	
	plants: dry steam, flash steam, and binary cycle.	
	Water is introduced into heat source which produces steam. Steam I will act as primary heat	
	source to produce steam again If primary steam is used in the turbine, it will be damaged in	
	short time. Hence clean steam is used. Alternator connected to turbine will produce	
	electricity.	

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

	Energy utilization efficiency of all equipment and buildings.	
	Efficient planning, operation, maintenance and housekeeping	
	Management aspects of design and operating data collection, field measurements, data	
	analysis, and training	
B	Attempt any one of the following	6
 a)	Boiler efficiency Direct method	6
	This is also known as 'input-output method' due to the fact that it needs only the useful	
	output (steam) and the heat input (i.e. fuel) for evaluating the efficiency.	
	This efficiency can be evaluated using the formula:	
	Boiler Efficiency (η) = (Heat output/Heat input)x 100	
	Boiler Efficiency (η) =[Qx(h _g -h _f)/q X GCV] x 100	
	Parameters to be monitored for the calculation of boiler efficiency by direct method are:	
	1. f Quantity of steam generated per hour (Q) in kg/hr.	
	2. Quantity of fuel used per hour (q) in kg/hr.	
	5. Calorific value of the fuel (GCV) in kcal/kg of fuel	
	6. h _g – Enthalpy of saturated steam in kcal/kg of steam	
	7. h _f – Enthalpy of feed water in kcal/kg of water	
b)	Given data:	4
	Investment : 45,000/-	
	Annual saving $\cdot 27000/$	
	7 minuar saving . 27000/-	

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

		Annual maintenance: 12000/-	
		Simple perhaps period - Total investment/ (appual serving _ appual maintenance)	
		Simple payback period – Total investment/ (annual saving – annual maintenance)	
		= 45000/(27000-12000) = 3 years	
		Importance of pay back period:	
		According to this method, the project that promises a quick recovery of initial investment is	
		considered desirable. If the payback period of a project computed by the above formula is	2
		shorter than or equal to the management's maximum desired payback period, the project is	
		accepted otherwise it is rejected. For example, if a company wants to recoup the cost of a	
		machine within 5 years of purchase, the maximum desired payback period of the company	
		would be 5 years. The purchase of machine would be desirable if it promises a payback	
		period of 5 years or less.	
5		Attempt any two of the following	16
	а	The Perform Achieve Trade (PAT) is an innovative, market-based trading scheme	8
		announced by the Indian Government in 2008 under its National Mission on Enhanced	
		Energy Efficiency (NMEEE) in National Action Plan on Climate Change (NAPCC). It aims	
		to improve energy efficiency in industries by trading in energy efficiency certificates in	
		energy-intensive sectors. The 2010 amendment to the Energy Conservation Act (ECA)	
		provides a legal mandate to PAT. Participation in the scheme is mandatory for Designated	
		Consumers under the ECA. It is being administered by the BEE that sets mandatory, specific	
		targets for energy consumption for larger, energy-intensive facilities. The PAT Scheme was	
		implemented in three phases- the first phase runs from 2012-2015 covering 478 facilities	
		from eight energy-intensive sectors, namely aluminum, cement, chor-alkali, fertilizer, iron	
		and steel, pulp and paper, textiles and thermal power plants. This accounts for roughly 60%	
		of India's total primary energy consumption. It targets energy consumption reductions of 6.6	
		million tons of oil equivalent in the 478 covered facilities.	
		The scheme imposes mandatory specific energy consumption targets on the covered facilities	
		with less energy efficient facilities having a greater reduction target than the more energy	

SUMMER-18 EXAMINATION Model Answer

Subject Name: Energy Management

Subject Code:

	efficient ones. A facility's baseline is determined by its historic specific energy consumption	
	between 2007-2010. Facilities making greater reductions than their targets receive "EsCerts"	
	or "energy saving certificates" which can be traded with facilities that are having trouble	
	meeting their targets, or banked for future use. The PAT scheme establishes plant-specific	
	targets rather than a sectoral target, with the average reduction target being 4.8% that is to be	
	achieved by the end of the first phase.	
b	Parts of centrifugal pump	4
	Seal: Centrifugal pump can be provided with packing rings or mechanical seal which helps	
	prevent the leakage of the pumped liquid into the atmosphere.	
	Shaft: The main function of the shaft in a centrifugal pump is to transmit the input power	
	from the driver into the impeller.	
	Casing: The casing contains the liquid and acts as a pressure containment vessel that directs	
	the flow of liquid in and out of the centrifugal pump.	
	Impeller: Centrifugal pumps use impeller as the primary source for their pumping action. Its	
	function is to increase the pressure of the liquid.	
	Bearing: The function of the bearing is to support the weight of the shaft (rotor) assembly, to	
	carry the hydraulic loads acting on the shaft, and to keep the pump shaft aligned to the shaft	
	of the driver.	
	Suction and discharge nozzles: These are inlet and outlet for pump.	
	impeller suction pipe shaft	4
с	Components of wind mill	4
	1) Rotor: Blades are attached to rotor and it connected by shaft to generator.	

<u>Model Answer</u>

17559 Subject Name: Energy Management Subject Code: 2) Blades: Wind lift and drag force will act on blades which are connected to rotor. 3) Shaft: It is used to transmit mechanical power produced by blades to generator. 4) Generator: It is device used to produce electricity using mechanical energy. 5) Tower: It is assembly on which wind turbine is placed at certain height. Rotor Blade 4 Gearbox Generator Nacelle Tower Attempt any two of the following 16 6 Factors affecting cooling tower performance 1 mark a each Wet bulb temperature of air Dry bulb temperature of air Cooling tower inlet water temperature Cooling tower outlet water temperature Exhaust air temperature Electrical readings of pump and fan motors Water flow rate Air flow rate

SUMMER-18 EXAMINATION Model Answer

Subject Name: Energy Management

Subject Code:

3

b Energy Management

An energy management system is a systematic process for continually improving energy performance and maximizing energy savings. The principle of an energy management is to engage and encourage staff at all levels of an organisation to manage energy use on an on-going basis. It also offer industrial facilities to manage their on-going energy use and identify opportunities to adopt energy-saving technologies, including those opportunities that do not necessarily require capital investment. An energy management helps ensure that energy efficiency improvements do not just happen on a one-time basis, but rather are continuously identified and implemented in a process of constant improvement. Experience has shown that even optimised systems lose their initial efficiency gain over time due to personnel and production changes if energy efficiency is not integrated into management practices In chemical industry distillation operation consumes more energy which can be reduced by

process improvement.

Energy Efficiency

Energy efficiency is defined as the use of energy in an optimum manner to achieve the same service that could have been achieved using a common less efficient manner. Energy efficiency is the practice of reducing the energy requirements while achieving the required energy output.

Replacement of old boiler with energy efficient boiler.

Energy Conservation

Energy conservation are efforts made to reduce the consumption of energy by using less of an energy service. This can be achieved either by using energy more efficiently (using less energy for a constant service) or by reducing the amount of services used (for example, by driving less). Energy conservation is a part of the concept of eco-sufficiency. Energy conservation reduces the need for energy services, and can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.

Use combined heat and power through co generation in industry.

2

<u>Model Answer</u>

Subject Name: Energy Management

Subject Code:

c	Energy conservation opportunities in pumping system (any eight)	1 mark
	• Ensure adequate NPSH at site of installation	each for any eight
	• Ensure availability of basic instruments at pumps like pressure gauges, flow meters.	, ,
	• Operate pumps near best efficiency point.	
	• Modify pumping system and pumps losses to minimize throttling.	
	• Adapt to wide load variation with variable speed drives or sequenced control of	
	multiple units.	
	• Stop running multiple pumps - add an auto-start for an on-line spare or add a booster	
	pump in the problem area.	
	• Use booster pumps for small loads requiring higher pressures.	
	• Increase fluid temperature differentials to reduce pumping rates in case of heat	
	exchangers.	
	• Repair seals and packing to minimize water loss by dripping.	
	• Balance the system to minimize flows and reduce pump power requirements.	
	• Avoid pumping head with a free-fall return (gravity); Use siphon effect to advantage:	
	Conduct water balance to minimize water consumption	
	• Avoid cooling water re-circulation in DG sets, air compressors, refrigeration systems,	
	cooling towers feed water pumps, condenser pumps and process pumps.	