

MODEL ANSWER

SUMMER-18 EXAMINATION

Subject Title: VERY LARGE SCALE INTEGRATION

17659 **Subject Code:-**

Important Instructions to examiners:

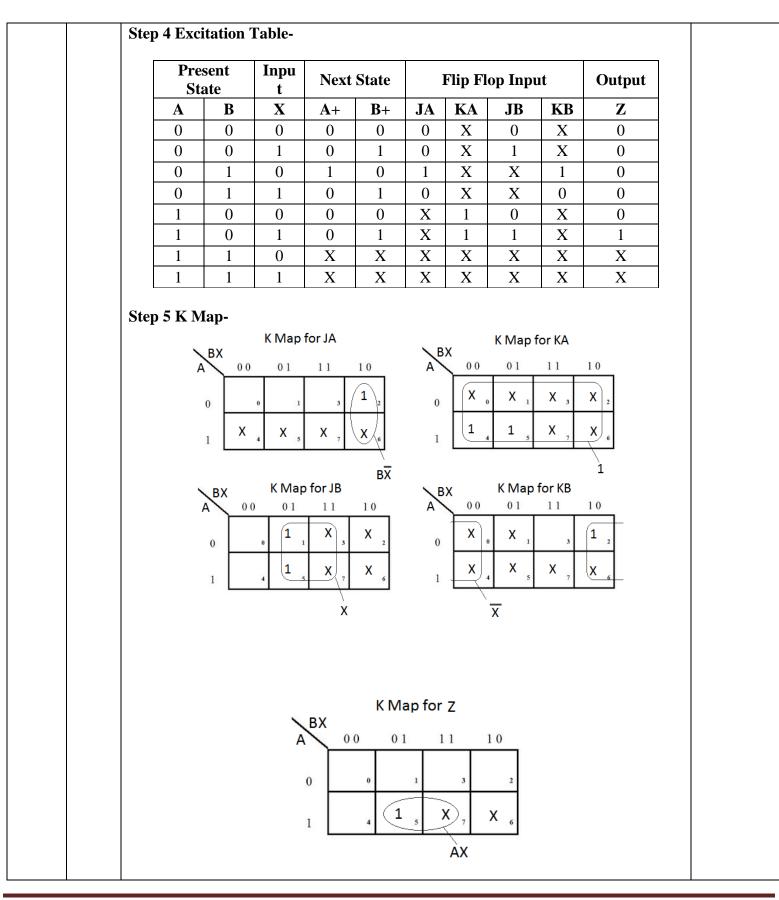
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	A)	Attempt any three:	12-Total Marks
	i)	Draw the AND gate and NOR gate using CMOS.	4 Marks
	Ans:	AND gate using CMOS:	2M each

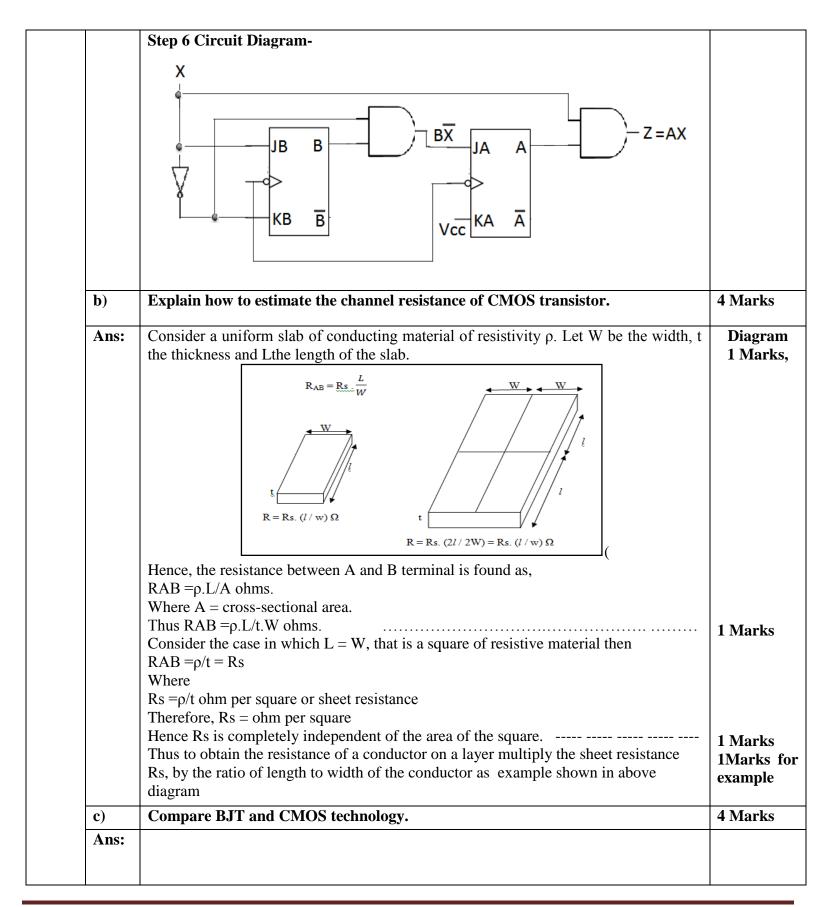
	CIMOS AND Gate. VDD VDD VDD VDD VDD Y = AB A B Y Y B A B Y Y B A B Y Y A Y	
	NOR gate using CMOS: VDD M_4 M_3 M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_1 M_2 M_2 M_2 M_2 M_1 M_2 M_2 M_2 M_1 M_2 M_2 M_2 M_2 M_1 M_2 M_2 M_2 M_2 M_1 M_2 M_2 M_2 M_2 M_1 M_2 M	
ii)	Write VHDL code for 3-bit up counter.	4 Marks
Ans:	Program: library IEEE; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity counter is port (Clock, CLR : in std_logic; Q : out std_logic_vector(2 downto 0));	Entity-2 Marks Architectur e-2 Marks

	architecture behavior of counter is				
	signal tmp: std_logic_vector (2 downto)))·			
	begin	<i>,</i> ,			
	process (Clock, CLR)				
	begin				
	if (CLR='1') then				
	tmp <= "000";				
	elsif (Clock'event and Clock='1') then				
	$tmp \le tmp + 1;$				
	end if;				
	end process;				
	Q <= tmp;				
	end behaviour;				
	Note: Any logic using with-select or caprogram.	se statement or if statement can be used f	or		
iii)	What is instantiation in VHDL? Writ	e one example.	4 Marks		
Ans:	Instantiation :		2 Marks of		
	The instantiation means the precompiled entity architecture component is declared in another VHDL entity program. A component instantiated in a structural description is				
	another VHDL entity program. A comp	onent instantiated in a structural description	is n		
	another VHDL entity program. A comp declared using component declaration.	•	is n ne		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component.	onent instantiated in a structural description	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example	onent instantiated in a structural description A component declaration declares the nam	is n ne		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE;	onent instantiated in a structural description A component declaration declares the nam ate using AND and NOT library IEEE;	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL;	onent instantiated in a structural description A component declaration declares the nam ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL;	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL;	onent instantiated in a structural description A component declaration declares the nam ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL;	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC;	ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC;	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC);	ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC;	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC);	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; architecture Behavioral of NANDG is	is n ne 2Marks fo		
	another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; architecture Behavioral of NANDG is component INVE	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin</pre>	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC); end NANDG; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; Z : out STD_LOGIC);	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin</pre>	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; Z : out STD_LOGIC; end component;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; end NANDG; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; z : out STD_LOGIC; in STD_LOGIC;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; Z : out STD_LOGIC; z : out STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC; b : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC; b : in STD_LOGIC; b : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC; b : in STD_LOGIC; b : in STD_LOGIC; i : in STD_LOGIC; i : in STD_LOGIC; b : in STD_LOGIC; b : in STD_LOGIC;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC); end NANDG; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; Z : out STD_LOGIC; end component; signal w : std_logic; begin w <= a and b;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	onent instantiated in a structural description A component declaration declares the name ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a: in STD_LOGIC; b: in STD_LOGIC; y: out STD_LOGIC; g: out STD_LOGIC; p: out STD_LOGIC; g: out STD_LOGIC;	is n ne 2Marks fo		
	<pre>another VHDL entity program. A comp declared using component declaration. and the interface of a component. Example Note: Any suitable example. NAND ga library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity INVE is Port (X : in STD_LOGIC; Z : out STD_LOGIC); end INVE; architecture Behavioral of INVE is begin z <= not x;</pre>	ate using AND and NOT ate using AND and NOT library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity NANDG is Port (a : in STD_LOGIC; b : in STD_LOGIC; y : out STD_LOGIC); end NANDG; architecture Behavioral of NANDG is component INVE port (X : in STD_LOGIC; Z : out STD_LOGIC; end component; signal w : std_logic; begin w <= a and b;	is n ne 2Marks fo		

iv)	Draw the diagram of Moore machine and Mealy machine. Write expression for its output.	4 Marks		
Ans:	Mealy Machine:	Diagram-1		
	store prove options to the outside world Next State Decoder N.S. N.S. N.S.	Marks each Output expression- 1 Marks For Moore and Mealy each		
	Mealy machine is the sequential system where output depends on present input and state. f (o/p) = f (Input, Present State.) Moore Machine			
	State Decoder Vest Decoder Vest Decoder Vest Next Decoder Vest Vest Vest Vest Vest Vest Vest Vest			
	Moore machine is the sequential system where output depends only on present state. $f(o/p) = f$ (Present State.)			
B)	Attempt any one:	8 Marks		
a)	Write any six features of spartan-3.	8 Marks		
Ans:	 Low-cost, high-performance logic solution for high-volume, consumer oriented applications Densities up to 74,880 logic cells Select IO interface signaling Up to 633 I/O pins 622+ Mb/s data transfer rate per I/O 	Any six - 1.25Marks to each and final marks are rounded to		
	 6. 18 single-ended signal standards 7. 8 differential I/O standards including LVDS, RSDS 8. Termination by Digitally Controlled Impedance 9. Signal swing ranging from 1.14V to 3.465V 	next integer		



	 10. Double Data Rate (DDR) support 11. DDR, DDR2 SDRAM support up to 333 Mb/s 12. Logic resources Abundant logic cells with shift register capability 13. Wide, fast multiplexers 14. Fast look-ahead carry logic 15. Dedicated 18 x 18 multipliers 16. JTAG logic compatible with IEEE 1149.1/1532 17. Select RAM hierarchical memory 18. Up to 1,872 Kbits of total block RAM 19. Up to 520 Kbits of total distributed RAM 20. Digital Clock Manager (up to four DCMs) 21. Clock skew elimination 22. Frequency synthesis 23. High resolution phase shifting 24. Eight global clock lines and abundant routing. 	8 Marks
b)	Draw the diagram of Cz process for water fabrication. List the steps involved in water fabrication.	8 Marks
Ans:	Czochralski (CZ) Process:Pullmechanism 50mm/hrImage: Seed holderSingle crystal neck shoulder (colspan="2">shoulder (colspan="2">seed holderSingle crystal neck shoulder (colspan="2">shoulder (colspan="2">single crystal neck shoulder (colspan="2">single crystal neck shoulder (colspan="2">single crystal neck siliconImage: Single crystal neck siliconSingle crystal neck silicon<	Diagram- 4M Steps-4M
	 Wafer Processing Oxidation 	



Epitaxy Diffusion Ion Implantation Lithography Etching Deposition Metallization . Q 2 Attempt any four of the following: **16Marks** A) Design a mealy sequence detector circuit for detecting sequence 101 using J -K 4 Marks a) Flipflop. Step 1: State Diagram-Ans: State Diagram-1 1/0 Marks 1/1 0/0 1/0 0/0 Excitation а С **Step 2 State** table OR 0/0 Tablestate table-**1** Marks Next state **Output** (Z) Presen X= t state Circuit X=1 X=1 X=0 0 diagram-2 Marks b 0 0 (00)a a b 0 0 (01)b с (10)cb 0 1 a Step 3 Modified Sate Table-Present Output Input **Next State** state Х Ζ Α B \mathbf{A} + **B**+ 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1

				Any four
	Sr.	CMOS Technology	Bipolar Technology	point 1M
	1	Low static power		each
	1. 2.		High power dissipation	
	<u> </u>	High input impedance	Low input impedance	
	5.	High packing density High delay sensitive to	Low packing density	
	4.	load	Low delay sensitive to load	
	5.	Low output drive current	High output drive current	
	6.	Bidirectional capability	Essentially unidirectional	
		It is an ideal switching		
	7.	device.	It is not an ideal switching device.	
	8.	Voltage driven	Current driven	
	9.	High power application	Low power application	
	10.	Unipolar device	Bipolar Device	
	11.	High current gain	Low current gain	
	12.	It has less fan out	It has more fan out.	
d)	Write the	e syntax of entity and arch	itecture in VH-IDL programming.	 4 Marks
Ans:	Entity –			Entity 2Marks
	Syntax			Architectur
	•	ity_name is		e 2Marks
	Port decla	aration;		
	end entity	y_name;		
	Architec	ture		
	Syntax:			
	architectu	are architecture_name of ent	ity_name is	
	architectu	are_declarative_part;		
	begin			
	Statemer	nts;		

	e)	Explain the sharing of complex operators.	4 Marks
	Ans: f) Ans:	 Sharing of Complex Operators: Description of component structure decides efficiency of a synthesized design. Optimization of individual components made from random logic produces similar results from two very different descriptions. Concentrate the majority of design effort on the implied component hierarchy rather than on the logical descriptions. This reduces the gate count and critical path for delay. Write the VHDL code for full adder. library IEEE; 	Each Point 1 Marks 4 Marks Declaration
		<pre>invary incled, use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity Full_Adder is Port (A : in std_logic; B : in std_logic; CIN : in std_logic; SUM : out std_logic; CARRY : out std_logic); end Full_Adder; architecture behavioral of Full_Adder is begin SUM <= A XOR B XOR CIN; CARRY<=(A AND B) OR (A AND CIN) OR (B AND CIN); end behavioral; Note: Anysutable logic using.</pre>	1Marks Entity 1Marks Architectur e 2Marks
Q. 3		Attempt any four of the following:	16 Marks
	a)	State the any four features of VHDL.	4 Marks
	Ans:	 VHDL has powerful construct VHDL is a Hardware Description language used for design entry and simulation of digital circuits. VHDL is an event-driven language; that is, whenever an event occurs on signals in VHDL it triggers the execution of the statement. VHDL is technology platform- independent language and portable VHDL allows both concurrent as well as sequential modeling It includes advance features of configuration It is a case sensitive language VHDL is also said to be strongly typed language VHDL supports design library 	Any four Features, 1 Mark each

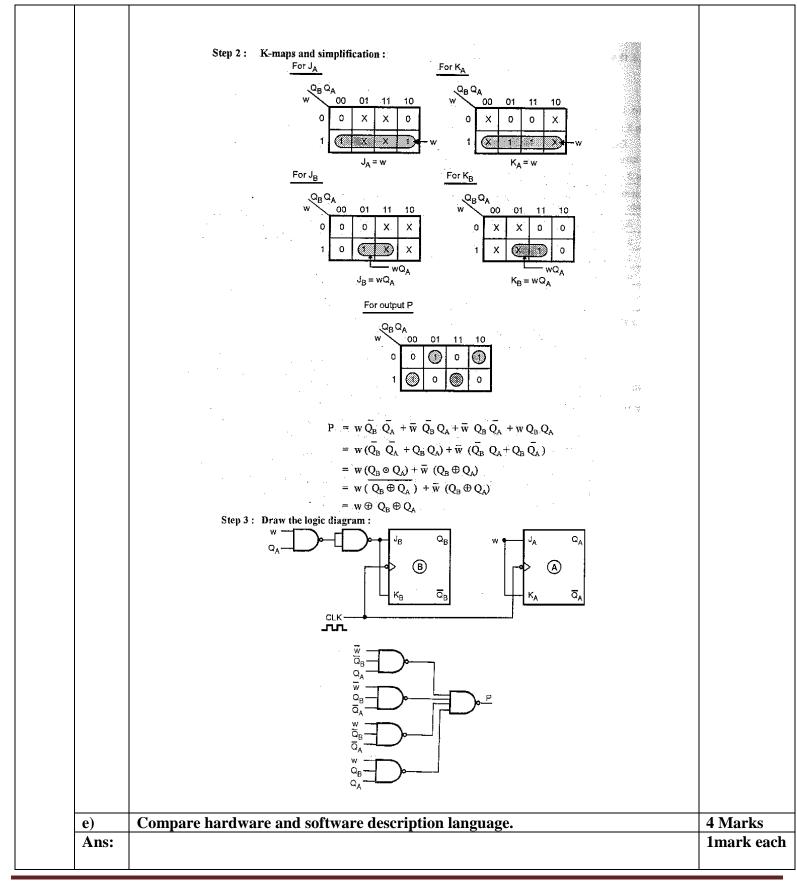
	 It can handle asynchronous as well as synchronous sequential circuits. Strongly typed language: Dealing with signed and unsigned numbers is natural, and there's less chance of making a precision mistake or assigning a 16-bit signal to a 4-bit signal. Ability to define custom types: A VHDL state machine can be coded naturally using the actual state names (e.g. wait, acknowledge, transmit, receive, etc.), not binary state numbers (e.g. 00, 01, 10, 11). Record types: Define multiple signals into one type. Natural coding style for asynchronous resets. Easily reverse bit order of a word. Logical statement (like case and if/then) endings are clearly marked. 	
b)	Design the Boolean expression $r = (A + B)$.C using CMOS logic.	4 Mark
	$ \overline{A} = \overline{A + B} \cdot \overline{C} \\ = \overline{A + B} + \overline{C} \\ = \overline{A \cdot B} + \overline{C} \\ + \overline{A} = \overline{A} + \overline{B} + \overline{C} \\ = \overline{A \cdot B} + \overline{C} \\ = $	1Mark Design 3Marks
c)	Compare synchronous and asynchronous sequential circuits. (any four points).	4 Mark
Ans:	Compare synem onous and asynem onous sequencial en cuits, (any rour points).	<u>-</u> - 19141 K

	Parameter	Asynchronous	Synchronous	
	Definition	Asynchronous is wherein all the flip-flops within the counter do not change state simultaneously. This is because all the flip-flops are not clocked simultaneously.	Synchronous is wherein all the flip- flops within the counter change state simultaneously. This is because all the flip-flops are clocked simultaneously.	Any four point 1Mark each
	Clock required	It does not use a clock for all flip flop. Only one flip flop is clocked	It uses a clock pulse	
	o/p affected by	The state of circuit can change immediately when an input change occurs	A change of state occurs only in response to a synchronizing clock pulse.	
	Memory element	Either latches(unlocked FF) or logic gates	Clocked FF	
		These circuits are difficult to design	These circuits are easy to design.	
	Speed	They are slower	They are faster	
d)	Write the VHDI	code for 3:8 decoder.		4 Marks
a) Ans:	Library IEEE ;	code for 5.8 decoder.		4 Marks Entity
Alls.	Use IEEE .std _log	gic_1164.all;		2 Marks
	Entity decoder is Port (a,b,c: in std Stb :in std_logic ; Y : out std_logic _ End decoder;	_logic; vector(7 downto 0));		Architectur e 2 Marks
	begin temp <=stb& a &	logic_vector(3 downto 0);		

		points 1Mark each
Ans:		Any four
f)	Compare FPGA and CPLD.	4 Marks
	performance profile window.	
	code that consumes the greatest CPU time and display these lines in order in the	
	6. Optimize everything above 1%: The performance analyser will identify the lines of	
	and efficiently.	
	5. Integers vs. Vectors: To increase the performance ranged integers are used in entity instead of std_logic_vectors. The simulator may be able to process the design faster	
	4. Reduce delay calculations.	
	3. Reducing waits.	
	repeatedly executed.	
	2. Reduce process sensitivity: this will prevent the function getting unnecessarily and	
	1. Use optimised standard libraries: The performance is increased when standard libraries are used instead of unoptimized.	
	Rules:	
	design that cannot be passed onto the synthesis tool is a bad coding style.	
	 Basically, any coding style that gives the HDL simulator information about the 	
	additional work for the HDL compiler and synthesizer, which, in turn, generates designs with greater number of gates.	
	• The key to higher performance is to avoid writing code that needlessly creates additional work for the HDL compiler and synthesizer, which in turn generates	
	performance under the given set of specifications.	
	• The essence of VHDL coding lies in understanding which style yields the ultimate	
	few would yield better performance.	
	• There may be more than one method to model a particular design part but only a	
	to use in the given situation.	I WIAIN
	Efficient Coding Styles:- A coding style is set of rules that a programmer uses for choosing an expressive form	carries 1 Mark
Ans:	Efficient Coding Styles:	Each ru carries
<u>e)</u>	Explain efficient coding styles.	4 Marks
	for program.	
	Note: Any logic using with-select or case statement or if statement can be used	
	end behavior;	
	"11111101" when temp =" 0110" else "1111110" ;	
	"11111011" when temp = "0101" else "11111101" when temp =" 0110" else	
	"11110111" when temp =" 0100" else	
	"11101111" when temp = "0011" else	
	"11011111" when temp =" 0010" else	

		Sr. No.	FPGA	CPLD	
		1	It is field programmable gate arrays.	It is complex programmable logic device.	
		2	Capacity is defined in terms of number of gates available.	Capacity is defined in terms of number of macro-cells available.	
		3	FPGA consumes less power than CPLD	CPLD consumes more power than FPGA devices.	
		4	Numbers of input and output pins on FPGA are less than CPLD.	Numbers of input and output pins on CPLD are high.	
		5	FPGA is suitable for designs with large number of simple blocks with few numbers of inputs.	CPLD are ideal for complex blocks with large number of inputs.	
		6	FPGA based designs require more board space and layout complexity is more.	CPLD based designs need less board space and less board layout complexity.	
		7	It is difficult to predict the speed performance of design.	It is easier to predict speed performance of design.	
		8.	FPGA are available in wide density range.		
). 4		Attem	pt any four of the following:		16 Marks
	a)		two advantages and disadvantage	or of VHDI	4 Marks
	Ans:	Auva	 verified (simulated) before synhardware (gates and wires). 2. VHDL allows the description of 3. VHDL is a dataflow language, u as BASIC, C, and assembly cod at a time. 4. A VHDL project is multipurpor can be used in many other p functional block parameters can element base, block composition 5. A VHDL project is portable. computing device project can be 6. Standard language 7. Fully expressive language 8. Hierarchical 	quired system to be described (modelled) and athesis tools translate the design into real of a concurrent system. Unlike procedural computing languages such e, which all run sequentially, one instruction se. Being created once, a calculation block projects. However, many formational and be tuned (capacity parameters, memory size, n and interconnection structure). Being created for one element base, a e ported on another element base,	Any two advantage 2 Marks Any tw disadvant nges 2 Marks
			 8. Hierarchical 9. Configurable 10. Tool availability 		

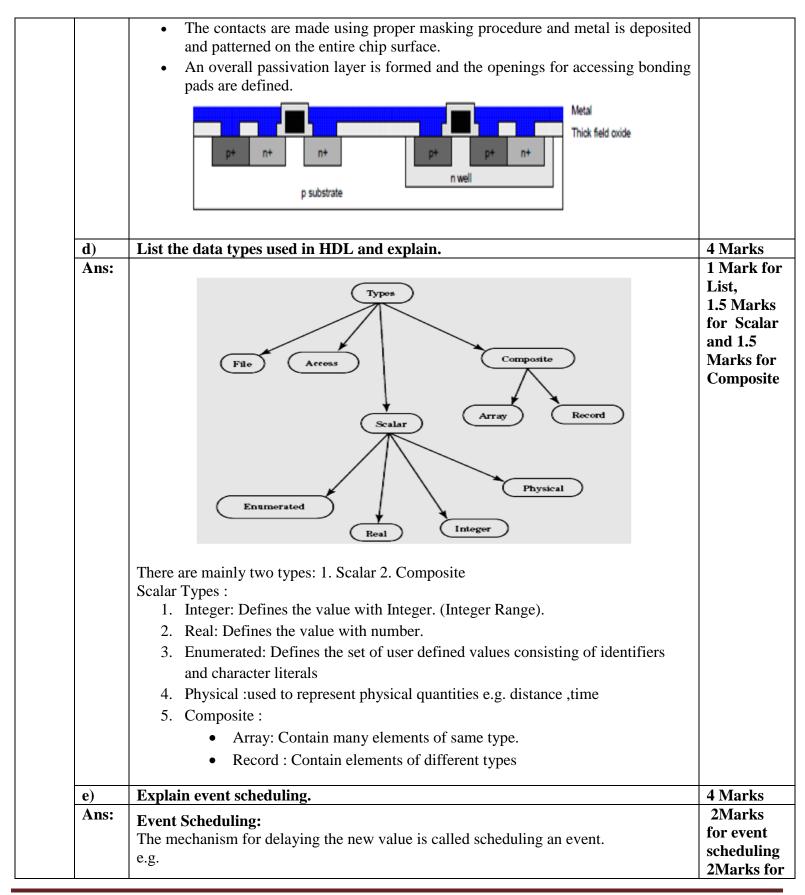
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

	 Dis Advantages: Synthesis results of VHDL may vary from one tool to another. Most synthesis tools allow the designer use synthesis directives to some level of control over implementation to make area efficient version speed efficient implementation choices. It has poor implementation due to results of inefficient code which can result in slow execution times or poor memory utilization. Synthesis tools allow designers to specify technology specific gate level implementation, but descriptions of these types are neither high level nor device independent. 	
b)	Define the following terms related to fabrication process. 1) Oxidation ii) Ion-implantation iii) Diffusion iv) Deposition.	4 Marks
Ans:	 1) Oxidation: Oxidation is a process which converts silicon on the wafer into silicon dioxide. ii) Ion-implantation: Ion implantation is the dominant technique to introduce dopant impurities into crystalline silicon. iii) Diffusion: Diffusion is the movement or addition of impurity atoms in a silicon substrate at high temperatures. iv) Deposition: A multitude of layers of different materials have to be deposited during the IC fabrication process. This the evaporating dopant material on to the silicon surface followed by a thermal cycle which is used to drive the impurities from the surface of silicon into bulk. 	Each 1 mark
c) Ans:	Write the VHDL code for D-flip-flop. library IEEE; use IEEE.STD_LOGIC_1164.all; entity d_flip_flop is port(din : in STD_LOGIC; clk : in STD_LOGIC; reset : in STD_LOGIC; dout : out STD_LOGIC); end d_flip_flop; architecture d_flip_flop_arc of d_flip_flop is begin dff : process (din,clk,reset) is begin if (reset='1') then dout<= '0';	4 Marks Entity 2 Marks Architectur e 2Marks

d) Ans:	Design pari	For e	every the	ree bits	that are	e observ	red on the						4 Mark Step 1
	consecutive of ones in th						ne parity	y bit	P=1 i	f and	l only	if numbers	3 1 Mar
	Step 1:		ite the s	-									Step 2 2 Marl
			Input	· · · · ·	nt state	Next	state	<u> </u>	FFi				Step 3
		•	W	Q _B	Q _A	Q _{B+1}	Q _{A+1}	J _B	1	J _A	KA	Output P	1 Mar
			0	0.	0	0	0	0	×	0	×	0	
	:	:	0	0	1	0.	1	ò	× .	×	0	1	
			0	1	0	1	0	×	0	0	×	1	
			0	1	1	1	1	×	0	×	0	0	
			1	0	0	. 0	1	0	×	1 '	×	1	
			1	0	- 1	1	0	1	×	×	1	0	
			1	1	0	1	I	×	0	1	×	0	
		Į,	1	1	1.	0	0	×	1	×	1	1	
		010	, G	(x x 1/0	Eq.	4	0/0	0 10	D.	\supset	°/₽		

		Sr	Software Language	Hardware Description Language	
		<u>No.</u>			
		1	In a software language, all assignments are sequential.		
			That means the order in which		
			the statements appear is	5	
			significant because they are	that way.	
			executed in that way.		
		2.	A software language cannot be used to describe the hardware		
			and so a hardware language is		
			used.		
		3.	In software language, the		
			statements are evaluated		
		4	sequentially. Different results are obtained	to take care of concurrency.	
		4.	if the order is changed.	The HDL is always concurrent.	
			in the order is enanged.		
	f)	Draw FPO	GA's configurable logic block d	iagram and write the function of it.	4 Marks
	Ans:				Diagram
			Input/	Output Blocks	2 Marks
					Function
			Logic Blocks	_ _	2 Marks
				Programmable	
				nents called "logic blocks", and a hierarchy	
			logic gates that can be inter-wired	e blocks to be "wired together" – somewhat d in different configurations	
		-		complex combinational functions, or merely	
		simple log	tic gates like AND and XOR. In	most FPGAs, the logic blocks also include	
0 -				-flops or more complete blocks of memory.	
Q.5		Attempt a	my four of the following:		16 Marks
	a)	State the a bench.	applications of test bench and w	rite down the typical format of test	4 Marks
	Ans:	Application	ons		Application
			est bench is used to verify the functi	onality or correctness of the design.	2Marks



1	2. It is useful to gen	orota eti	mult	to for st	imula	Hon				Format
	3. It is used to analy						oult o	ftwo	imulations	Format 2Marks
	4. To compare the re		-		-		suit o	I two		21 11 21 NJ
	5. To apply this stin					et an	to c	ollect	nutnut recoonces	
	6. To compare out			•					utput responses.	
		put resp	0115	es with	expe	Cieu	Value	28.		
	A typical test bench fo	ormat is	5							
	entity TEST_BENCH									
	end;									
	architecture TB_BEHA				BEN	CH is				
	component ENTITY_U				`					
	port (list- of- ports-their end component;	r-types-	ana-	modes);					
	Local-signal-declaration	ne·								
	begin	113,								
	Generate-waveforms-us	sing-beł	navi	oral-co	nstru	cts;				
	Apply- to-entity-under-	-test;								
	EUT: ENTITY_UNDE		-	1	` 1			ions)		
	Monitor-values-and-con	mpare-v	vith-	-expect	ed-va	lues;				
	end TB_BEHAVIOR;									
b)	Design 2-bit sequentia	l count	er 11	sing m	pealv	mac	nine			4 Marks
Ans:	State Diagram			sing in	icary	maci	mic.			
11100	State Table:									Table
		Count	Pre	vious	Next		Excit	tation		1Marks
			Stat	te	State					Kamp
			Q 1	Q ₀	Q1*	Q ₀ *	T ₁	T ₀		2Marks
		0	0	0	0	1	0	1		Diagram 1Marks
		1	0	1	1	0	1	1		IMarks
		2	1	0	1	1	0	1		
		3	1	1	0	0	1	1		
	*7									
	Kamp:									
		Kmap	for T	1		ki	nap f	or T0		
		Q0				00				
	Q	۱<u>۲</u>°	1	1	(21	0]	1		
		0	/î	Q0		~ / /	1 1	1	1	
		1				₁∄		.П	_	
		-	V]		тĽ	1	9		

	Circuit Diagram: $Vcc \text{ or } logic 1 \rightarrow \overline{T_0} Q_0 \rightarrow \overline{T_1} Q_1 \rightarrow \overline{Q_1} \rightarrow Q$	
c)	Explain n-well CMOS fabrication process with neat sketches.	4 Marks
Ans:	The fabrication steps are as follows: Thick SiO2 layer is grown on p-type silicon wafer. SiO2	Steps 2Marks Neat sketches 2Marks
	After defining the area for N-well diffusion, using a mask, the SiO2 layer is etched off and n-well diffusion process is carried out.	
	Oxide in the n transistor region is removed and thin oxide layer is grown all over the surface to insulate gate and substrate. Polysilicon Thin gate oxide	
	The polysilicon is deposited and patterned on thin oxide regions using a mask to form gate of both the transistors. The thin oxide on source and drain regions of both the transistors is removed by proper masking steps. Polysilicon Thin gate oxide	
	 Using n+ mask and complementary n+ mask, source and drain of both nMOS and pMOS transistors are formed one after another using respective diffusion processes. These same masks also include the VDD and VSS contacts. 	

	X<= a after 0.5ns when select=0 else X<= b after 0.5ns The assignment to signal x does not happen instantly. Each of the values assigned to x contain an after clause. By assigning port x a new value, an event was scheduled 0.5ns in the future that contains the new value for signal x. when the event matures (0.5 nanoseconds in the future), signal receives a new value. ARCHITECTURE dataflow OF mux IS SIGNAL select : INTEGER; BEGIN select <= 0 WHEN s0 = `0' AND s1 = `0' ELSE 1 WHEN s0 = `1' AND s1 = `0' ELSE 2 WHEN s0 = `0' AND s1 = `1' ELSE	example or justificatio n
f)	3; x <= a AFTER 0.5 NS WHEN select = 0 ELSE b AFTER 0.5 NS WHEN select = 1 ELSE c AFTER 0.5 NS WHEN select = 2 ELSE d AFTER 0.5 NS; END dataflow; Draw the design flow of ASIC and explain.	4 Marks
Ans:	ASIC DESIGN FLOW: Note: Any other relevant diagram and explanation can be consider.	Design flow diagram 2Marks Explainatio n 2Marks

Specifications: In this step all the functionality and features are defined, such as power	
consumption, voltage reference, timing restrictions and performing criterion. Chip	
planning is also performed in this step.	
The next step is to decide the architecture for the design from the specification.	
RTL Coding: This is beginning of the ASIC design flow. The micro architecture is	
transformed into RTL code, RTL is expressed usually in Verilog or VHDL, by using a	
HDL one can describe any hardware (digital) at any level.	
Simulation: Functional/Logical Verification is performed at this stage to ensure the	
RTL designed matches the idea.	
Synthesis: Once Functional Verification is completed, the RTL is converted into an	
optimized Gate Level Net list. This step is called Logic/RTL synthesis. This is done by	
Synthesis Tools such as Design Compiler (Synopsys), Blast Create (Magma), RTL	
Compiler (Cadence) etc A synthesis tool takes an RTL hardware description and a	
standard cell library as input and produces a gate-level net list as output. The resulting	
gate-level net list is a completely structural description with only standard cells at the	
leaves of the design.	
At this stage, it is also verified whether the Gate Level Conversion has been correctly	
performed by doing simulation.	
Physical Implementation: The next step in the ASIC flow is the Physical	
Implementation of the Gate Level Netlist. The Gate level Netlist is converted into	
geometric representation. The geometric representation is nothing but the layout of the	
design. The layout is designed according to guidelines based on the limitations of the	
fabrication process.	
The Physical Implementation step consists of three sub steps; Floor planning,	
Placement, Routing The file produced at the output of the Physical Implementation is the CDSH file. It is	
The file produced at the output of the Physical Implementation is the GDSII file. It is the file used by the foundry to febriate the ASIC. Physical Varification is performed	
the file used by the foundry to fabricate the ASIC. Physical Verification is performed to verify whether the layout is designed according the rules.	
For any design to work at a specific speed, timing analysis has to be performed. We	
need to check whether the design is meeting the speed requirement mentioned in the	
specification. This is done by Static Timing Analysis Tool; it validates the timing	
performance of a design by checking the design for all possible timing violations for	
example; set up, hold timing.	
After Layout, Verification, Timing Analysis, the layout is ready for Fabrication. The	
layout data is converted into photo lithographic masks. After fabrication, the wafer is	
diced into individual chips. Each Chip is packaged and tested.	
Q.6 Attempt any four of the following: 16 M	Aarks
	arks
	ity 2
Use IEEE, Std logic_1164.all; Mar	
	hitectur
	/Iarks
Sout: out std_logic);	
End shift_siso;	

b) Draw HDL design flow for synthesis and explain. 4 Marks Ans: Image: Ansity of the synthesis and explain. Ans: Image: Ansity of the synthesis and explain. Image: Ansity of the synthesis and explain and and the synthesis and explain and explain and explain and selected signal assignment statements are converted to their boolean equivalent in this intermediate form. The optimized Boolean description. For this it uses number of algorithm and rules. This process is to improve structure of Boolean equations by applying 	b) Draw HDL design flow for synthesis and explain. 4 Marks Ans: Image: Technology library The synthesis process produces an optimized gate level net list from all these inputs. The translation from RTL description to Boolean equivalent description is usually not user controllable. The intermediate form that is generated is a format that is optimized for a particular tool and may not even be viewable by the user. All the conditional signal assignments and 		Architecture behave of shift_sisois Signal Temp: Std_logic_vector (2 down to 0); Begin Process (clk) Begin If (clk`event and clk = 1)then For i in 0 to 2 loop Temp (i + 1)<= Temp (i); End loop; Temp (0) <= Sin; End if; End process; Sout<=Temp (2); End behave;	
 Ans: Ans: The process that converts user, hardware description into structural logic description. Synthesis is a means of converting HDL into real world hardware. It generates a gate level net list for the target technology. The synthesis tool converts register transfer level (RTL) description to gate level net list. These gate level net lists consist of interconnected gate level macro cells. The inputs to the synthesis process are RTL (register transfer level) VHDL description, circuit constraints and attributes for the design, and a technology library. The synthesis process produces an optimized gate level net list from all these inputs. The translation from RTL description to Boolean equivalent description is usually not user controllable. The intermediate form that is generated is a format that is optimized for a particular tool and may not even be viewable by the user. All the conditional signal assignments and selected signal assignment statements are converted to their boolean equivalent in this intermediate form. The optimization process takes an unoptimized Boolean description and converts it to an optimized Boolean description. For this it uses number of algorithm 	 Ans: The process that converts user, hardware description into structural logic description. Synthesis is a means of converting HDL into real world hardware. It generates a gate level net list for the target technology. The synthesis tool converts register transfer level (RTL) description to gate level net list. These gate level net lists consist of interconnected gate level mater to the design, and a technology library. The synthesis process produces an optimized gate level net list from all these inputs. The synthesis process are optimized gate level net list from all these inputs. The intermediate form that is generated is a format that is optimized for a particular tool and may not even be viewable by the user. All the conditional signal assignments and 	b)	Note any other suitable logic.	4 Monka
and rules. This process aims to improve structure of Boolean equations by applying	intermediate form. The optimization process takes an unoptimized Boolean description and converts it to an optimized Boolean description. For this it uses number of algorithm		 The process that converts user, hardware description into structural logic description. Synthesis is a means of converting HDL into real world hardware. It generates a gate level net list for the target technology. The synthesis tool converts register transfer level (RTL) description to gate level net list. These gate level net lists consist of interconnected gate level macro cells. The inputs to the synthesis process are RTL (register transfer level) VHDL description, circuit constraints and attributes for the design, and a technology library. The synthesis process produces an optimized gate level net list from all these inputs. The translation from RTL description to Boolean equivalent description is usually not user controllable. The intermediate form that is generated is a format that is optimized for a particular tool and may not even be viewable by the user. All the conditional signal assignments and selected signal assignment statements are converted to their boolean equivalent in this intermediate form. The optimization process takes an unoptimized Boolean description and converts it to an optimized Boolean description. For this it uses number of algorithm 	Design flow 2 Marks. Explanatio

c)	Explain CMOS transmission gate with neat diagram.	4 Marl
Ans:	 Transmission gate consists of one NMOS and one PMOS transistor in parallel. The gate voltages applied to these two transistors are also set to be complementary signals. The CMOS transmission gate operates as a bidirectional switch between the nodes A and B which is controlled by C. If C is at high logic then both transistors are ON and provides a low resistance current path between the nodes A and B. If C is low, then both the transistors are off and path between A and B is open circuit. This condition is called as high impedance state. 	Diagra mark, anation mark
	A detailed analysis of working of transmission gates follows: • When input node A is connected to VDD and control logic C is also high, C = 1 : The output node B may be connected to capacitor. Let us say, voltage at output node is Vout. For PMOS, Source of is at higher voltage than drain. For NMOS, drain is at higher voltage than Source terminal. Hence, node A will act as source terminal for pMOS and as drain terminal for nMOS. Drain to Source and gate to source voltages for nMOS are as: $V_{DS,n} = VDD - Vout$ $V_{GS,n} = VDD - Vout$ For nMOS to be turned off, $V_{GS,n} < V_{th,n}$ $VDD - Vout < V_{th,n}$ $VDD - Vout < V_{th,n}$ $Vout > VDD - V_{th,n}$ (Cut off region) For Vout < VDD - $V_{th,n}$	
d)	Draw the architecture of XC950O CPLD.	4 Mar
Ans:		Corree labelle diagra marks

	JTAG Port JTAG P	
	VO CO VO CO VO VO VO VO VO VO VO VO VO V	
e) Ans:	 Explain event based simulator. Event driven signal keeps track Of any change in the signal in the event queue. The simulator starts simulation as soon as any signal in event list changes its value. For this the simulator has to keep record of all the scheduled events in future. This causes a large memory overload but gives high accuracy for asynchronous design. It simulates events only. Gates whose inputs have events are called active and are placed in activity list. The simulation proceeds by removing a gate from the activity list. The process Of evaluation stops when the activity list becomes empty. 	4 Marks Each Point carries 1 Marks

f)	Different points).	iate between Xilinx and Atme	el series architecture of CPLD (four	4 Mai
Ans:				Any f
	Sr	Xilinx CPLD	Atmel CPLD	points
	no.			mark
	1.	XC 9536, XC 9572, XC	ATF 1502, ATF 1504, ATF 1508	
		95108 these have 36, 72,	these	
		108 microcells.	have 32, 64 and 128 micro cells.	
	2	Available in variety of	Available in variety of packages but	
		pacakages but 44 and 64	44, 68	
		pins PLCC of J lead	and 84 pins PLCC or J lead packages	
		packages are more popular.	are more popular.	
	3.	Xilinx offers their web	ATMEL offers their WinCUPL PLD	
		packs free downloads.	compiler for free download.	
	4.	The most current version	The most current version only works	
		only works on windows XP.	on windows XP.	
	5.	In conversion application	In conversion application atmel series	
		XC 4000 FPGAs the	FPGAs equivalent are:	
		equivalents are:	• AT 40K05/10	
		• XC 4002, XC 4003	• AT40K05/20	
		• XC 5200 Series XC		
		5202 and XC 5204		
		• XC 505 (Spartan		
		series) XC 10.		